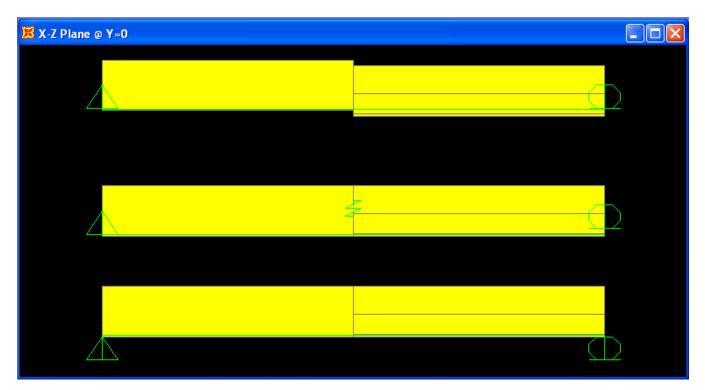
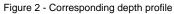
Align solid and hollow sections

Test Problem		
Name:	Align solid and hollow sections with different center-of-gravity locations	
Descriptio n:	Model relative positive position for frame sections which have identical outlines, but different center-of-gravity locations due to one section being hollow.	
Program:	SAP2000	
Version:	14.2.0	
Model ID:	na	


The internal forces and capacities of a beam are calculated with respect to the cross-section center of gravity. This test problem studies the modeling of a rectangular and continuous beam which is solid along the left segment and hollow along the right. This void is located along the bottom of the element.


Default insertion-point settings locate each segment such that the center of gravity aligns with the element chord. As shown in the image at the top of Figures 1-4, this results in misalignment between each segment because the center of gravity is higher for the hollow section. This may be corrected through either of the following methods:

- 1. Draw element chords to account for the difference in center-of-gravity location, as shown in the middle image of each figure.
- 2. Use a bottom-center insertion point to draw the two segments along the same line as shown in the bottom image of each figure.

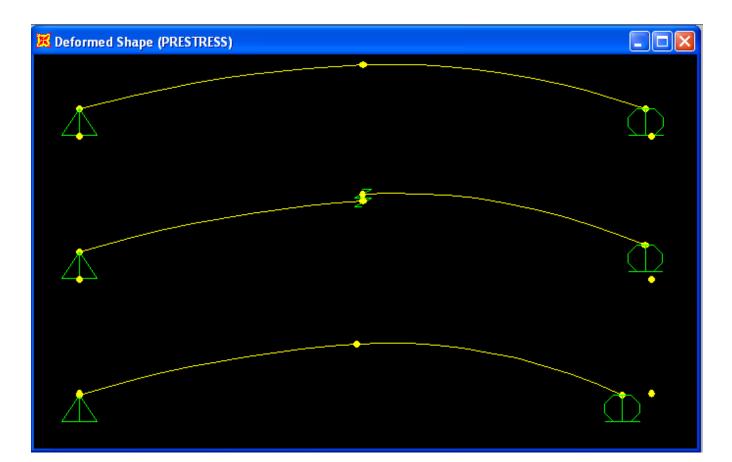

🔀 X-Z Plane @ Y=0	
Centroid insertion point (modeled along the same "line"):	
	\bigcirc
Centroid insertion point (modeled at actual elevation):	
Bottom center insertion point:	

Figure 1 - Modeling approaches

To demonstrate how each of these conditions affects response, a straight tendon is modeled below each beam. Tendon deflection and internal moment (relative to cross-section centroid) is presented. Results are correctly reported only for the second and third case, where the solid and hollow sections properly align.

Figure 3 - Displacement

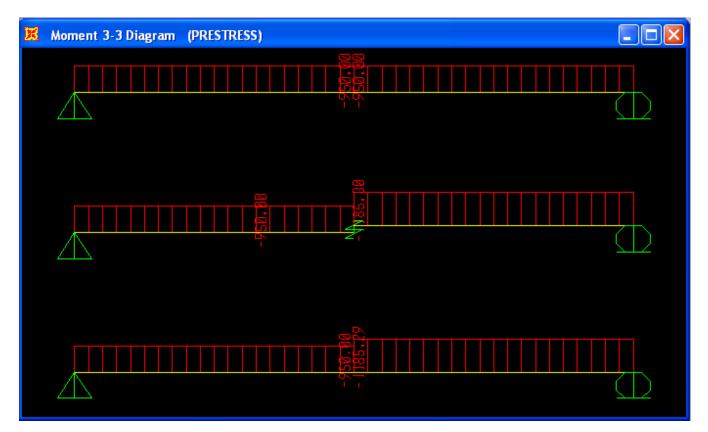


Figure 4 - Moment

Attachments

• SAP2000 V14.2.0 model (zipped SDB file)