Moment curvature and cracked moment of inertia

- The purpose of this test problem is to explain the meaning of various parameters reported for the moment curvature curve and illustrate how is the cracked moment of inertia calculated.
- The moment curvature analysis is performed for circular column section described in detail in Example 2 of Reference [1].

Cross-Section

Explanation of Moment-Curvature Output Parameters

Exact Integration Curve Phi-Conc, M-Conc

 Phi-Conc is the curvature and M-Conc is the moment for which ultimate concrete strain is reached in extreme compressive fiber

I SAP 2000 - 36in DIA COLUMN

Moment Curvature Curve (Limits: P(comp.) = -4117.784, P(ten.) = 720)

Exact Integration Curve Phi-Steel, M-Steel

 Phi-Steel is the curvature and M-Steel is the moment for which failure reinforcement stress is reached in the any reinforcement bar

互 SAP 2000 - 36 in DIA COLUMN

Moment Curvature Curve (Limits: P(comp.) = -4117.784, P(ten.) = 720)

🔀 SAP 2000 v15.0.0 Ultimate - model A V15.0.0

Nonlinear Material Da	ta			
Edit				
Material Name	Mate	erial Type		
A615Gr60	Ret	bar		
Hysteresis Type	Drucker-Prager Parameters	Units		
Kinematic 💌	Friction Angle	Kip, in, F 💌		
	Dilatational Angle			
Stress-Strain Curve Def	nition Options			
 Parametric 	Simple	Convert To User Defined		
C User Defined				
Parametric Strain Data				
Strain At Onset of Strain Hardening 0.01				
Ultimate Strain Capacity 0.09				
Final Slope (Multiplier on E)				
Use Caltrans Default Controlling Strain Values (Bar Size Dependent)				
Chau Strass Strain Plat				
Show Stress Strain Flot				
OK Cancel				
1				
all [*]				
PS				

Caltrans Model Phi-yield(initial), M-yield

 Phi-yield(initial) is the curvature and M-yield is the moment for the the first rebar in the crosssection starts to yield

📕 SAP 2000 - 36 in DIA COLUMN

Moment Curvature Curve (Limits: P(comp.) = -4117.784, P(ten.) = 720)

Caltrans Model Phi-yield(idealized), Mp

- Phi-yield(idealized) is the curvature and Mp is the moment for the initial yield on the Caltrans idealized moment curvature curve.
- The idealized curve is obtained as per Caltrans Seismic Design Criteria [2].

I SAP 2000 - 36 in DIA COLUMN

Moment Curvature Curve (Limits: P(comp.) = -4117.784, P(ten.) = 720)

Caltrans Model Icrack

• Icrack is calculated as follows:

$$I_{crack} = \frac{M_p}{C_p E} = \frac{20163 \text{ kip-in}}{(0.00016702 \text{ rad/in})(3604 \text{ ksi})} = 33483 \text{ in}^4$$
$$I_{crack} = \frac{M_y}{C_y E}$$

 Compare Icrack = 33483 in⁴ with gross moment of inertia of 81394 in⁴

Property Data				
Section Name	36in DIA COLUMN			
PropertiesCross-section (axial) area1011Torsional constant1621Moment of Inertia about 3 axis8131Moment of Inertia about 2 axis8131Shear area in 2 direction9131Shear area in 3 direction9131	111.3482Section modulus about 3 axis452i2777.68Section modulus about 2 axis4521394.52Plastic modulus about 3 axis7701394.52Plastic modulus about 2 axis77013.0094Radius of Gyration about 3 axis813.0094Radius of Gyration about 2 axis8	21.9179 21.9179 01.2932 01.2932 .9711		
[

References

- [1] Robert Mathews: Moment Curvature, 2001. http://www.structsource.com/pdf/Momcurv_web.pdf
- [2] Caltrans Seismic Design Criteria, Version 1.4 http://www.dot.ca.gov/hq/esc/techpubs/manual/othermanual/other-enginmanual/seismic-design-criteria/sdc.html