Moment curvature and cracked moment of inertia

- The purpose of this test problem is to explain the meaning of various parameters reported for the moment curvature curve and illustrate how is the cracked moment of inertia calculated.
- The moment curvature analysis is performed for circular column section described in detail in Example 2 of Reference [1].

Cross-Section

Explanation of Moment-Curvature Output Parameters

Exact Integration Curve Phi-Conc, M-Conc

- Phi-Conc is the curvature and M-Conc is the moment for which ultimate concrete strain is reached in extreme compressive fiber

I SAP 2000-36in DIA COLUMN

Concrete Hodel - Mander-Confined(C)

Exact Integration Curve Phi-Steel, M-Steel

- Phi-Steel is the curvature and M -Steel is the moment for which failure reinforcement stress is reached in the any reinforcement bar

K SAP 2000 v1 5.0.0 Ultimate - model A V1 5.0.0

Nonlinear Material Data

Edit

「 Use Caltrans Default Controlling Strain Values (Bar Size Dependent)
Show Stress-Strain Plot...

OK Cancel

Material Stress-Strain Curve Plot
$\left[\begin{array}{l}\text { Material Name } \\ \text { A615Gr60 }\end{array}\left[\begin{array}{l}\text { Material Type-} \\ \begin{array}{l}\text { Rebar }\end{array}\end{array} \begin{array}{l}\text { Symmetry Type } \\ \text { Uniaxial }\end{array}\right.\right.$

Strain (in/in) Plot Control Parameters

「 Show Shear Curve
Γ Add Left and Right Borders
Γ Add Top and Bottom Borders
Γ Reverse Plot Axes Direction
Γ Disable Snap

Units
$\mathrm{Kip}, \mathrm{in}, \mathrm{F} \rightarrow$

Caltrans Model Phi-yield(initial), M-yield

- Phi-yield(initial) is the curvature and M-yield is the moment for the the first rebar in the crosssection starts to yield

I SAP $2000-36 \mathrm{in}$ DIA COLUMN

Homent Curvature Curve (Limits: $P($ comp. $)=-4117.784, P(t e n)=720$.

Strain Diagram

F Plot Exact-Integration Curve

- Plot 3×3 Fiber Model Curve

V Caltrans Idealized Model	No. of Points 20
P [Tension +ve] -1000	Angle (Deg)
Max Curvature $\quad 1.342 \mathrm{E}-03$	Mmax $=20966.92$
Phi-Conc $=.00134155$	M-Conc $=20966.92$
Phi-Steel $=$ N/A	M-Steel $=\mathrm{N} / \mathrm{A}$
Phi-yield(Initial) $=.00013205$	M -yield $=15941.855$
Phi-yield(ldealized) $=.00016702$	$\mathrm{Mp}=20163$

Analysis Control

C Concrete Failure (Lowest Ultimate Strain)

- Concrete Failure (Highest Ulltimate Strain)
V First Rebar/Tendon Failure
「 User Defined Curvature

Curves

New Curve

Selected Curve Color
Click to:
Add Curve

Delete Curve

[^0]Material Stress-Strain Curve Plot

Caltrans Model Phi-yield(idealized), Mp

- Phi-yield(idealized) is the curvature and Mp is the moment for the initial yield on the Caltrans idealized moment curvature curve.
- The idealized curve is obtained as per Caltrans Seismic Design Criteria [2].

II SAP 2000 - 36 in DIA COLUMN
Moment Curvature Curve (Limits: P(comp.) =-4117.784, P(ten.) = 720)

Caltrans Model Icrack

- Icrack is calculated as follows:

$$
\begin{aligned}
& I_{\text {crack }}=\frac{M_{p}}{C_{p} E}=\frac{20163 \mathrm{kip}-\mathrm{in}}{(0.00016702 \mathrm{rad} / \mathrm{in})(3604 \mathrm{ksi})}=33483 \mathrm{in}^{4} \\
& I_{\text {crack }}=\frac{M_{y}}{C_{y} E}
\end{aligned}
$$

- Compare Icrack $=33483$ in 4 with gross moment of inertia of 81394 in 4

References

[1] Robert Mathews: Moment Curvature, 2001. http://www.structsource.com/pdf/Momcurv_web.pdf
[2] Caltrans Seismic Design Criteria, Version 1.4 http://www.dot.ca.gov/hq/esc/techpubs/manual/othermanual/other-engin-manual/seismic-design-criteria/sdc.html

[^0]: ICrack $=33487.397$

