CSiBridge V15.0.0+

Verification of Composite Steel Bridge Design per AASHTO LRFD 2007 with 2008 Interims

Program: CSI Bridge Version: V15.0.0+

Latest Tested Build: V15.1.0_Y

Tested By: Ondrej Kalny

Date: 5/7/2011

Document/Topic Comments FHWA Design Example Page Number

Index of calculations

Introduction

Notation

Model A

Geometry 1-6, 3-2, 3-13

Hand calculations and sketches

Dead Loads 3-15 (Table 3-6)

Live Loads

Design Checks

- Strength Limit State
- Strength Limit State, With Pour Sequence
- Fatigue Limit State
- Service Limit State
- Service Limit State, With Pour Sequence
- Constructability Limit State
- Constructability Limit State, With Pour Sequence

CSiBridge Tabular Output

- Strength G2 at 50ft and 120ft
- Fatigue G2 at 50ft and 120ft
- Service G2 at 50ft and 120ft
- Constructability 50ft and 120ft

Spreadsheet Calculations

 Strength, Fatigue, Service and Constructructability 50ft and 120ft

Model B

Model C

Miscellaneous

Comparison of Models A, B and C

Database documentation for relevant tables

Marked up database documentation.

Appendices

Appendix A: Optimization

Appendix B: Model Variations

Electronic Files

Index

plate-girder-section detailed design.xls Excel spreadsheet used to independently perform

the design

Design Results Section at G2 0.417L.xls Formatted CSI Bridge Output

Design Results Section at G2 1.000L.xls Formatted CSI Bridge Output

References

[1] FHWA/NHI: LRFD Design Example for Steel Girder Superstructure Bridge, 2003 (available at https://wiki.csiberkeley.com/x/IYEn)

[2] CSI Wiki - Tracking of Issues For CSI Bridge Builds V15.0.0_xxx (available at https://wiki.csiberkeley.com/x/sAEw)

Introduction

- This document provides a documentation for the verification of the composite steel bridge design of CSI Bridge.
- The model used in this tutorial was is loosely based on the model described in the "LRFD Design Example for Steel Girder Superstructure Bridge" (FHWA NHI-04-041) report published by FHWA in November 2003.

Overview

- Model A: apply loads to applicable geometry (utilize bridge design actions)
- Model B: apply all loads to fully constructed bridge (for preliminary design; utilize bridge design actions)
- Model C: use staged construction

Notation

- To easily distinguish load cases, load combinations, and design requests for individual model, precede their names by the model letter. For example, for Model A, the names would be as follows:
 - Load case: "a. LC"
 - Load Combination: "a- COMB"
 - Design Request: "a_ DReq"

Model A

- Model A will not use staged construction analysis.
- Each loading will be applied in a separate (single-staged staged construction) load case that reflects the actual structure (noncomposite, long-term composite, short-term composite) that resists the applied loads.

- Haunch (distance from top of web to bottom of of slab) is 3.5". See p. 3-12 of the FHWA Example.
- Effective deck thickness is 8.0" and this was entered into the CSI Bridge model (Note that total deck thickness including the sacrificial overlay is 8.5".)

Geometry – Initial Trial Plate Sizes

Subject: steel buildge design capabilities of USI buildge Subtask: Section Properties

Prepared by: 0 k

Date: 5/11/2010

Sheet No. /

of

I-Girden

11/4" Flange I-Girden

I-Girden 21/2" Top Flange

Subject:

Subtask:

Prepared by:

Date:

Sheet No. 2

of

Effective slow width should be based on 12 times the

slab thickness plas ... " which governs

- AASHTO Art. 4.6.2.6 (p. 4-52)

- FHWA Example (6.3-11)

Subject:

Subtask: section G2 0.417L - Geometry checks

Prepared by:

Date:

Sheet No. 3

of

section 62 0.417L

Bottom Flange:

46.3.2-4; p. 6-254

$$\lambda t = \frac{b}{2t} = 8$$
 ... Newdorness ration for compression flungs (bottom)

$$\lambda PF = 0.38 \sqrt{\frac{E}{F_{yc}}} = 0.38 \sqrt{\frac{29000 \, \text{Ksi}}{50 \, \text{Ksi}}} = 9.15 \ldots \text{ limiting slenderness natio for compact flange}$$

$$\lambda_{r}f = 0.95 \sqrt{\frac{Ek_{c}}{F_{yN}}} = 0.95 \sqrt{\frac{(29,000 \, \text{ksi})(0.364)}{35 \, \text{ksi}}} = 16.967 \dots \text{ limiting slendenness}$$

$$\text{ratio for noncompact flange}$$

$$k_c = \frac{4}{\sqrt{\frac{D}{t_{xx}}}} = \frac{4}{\sqrt{\frac{5411}{0.511}}} = 0.384$$

Web:

$$\lambda_{\overline{w}} = \frac{2D_{c}}{1 + w} = \frac{(2)(25^{11})}{(0.5^{1})} = 100$$

$$\lambda_{\overline{w}} = 5.7 \left| \frac{E}{F_{yc}} \right| = 5.7 \sqrt{\frac{29000}{50}} = 137.3$$

$$\lambda_{\overline{w}} = 5.7 \left| \frac{F_{yc}}{F_{yc}} \right| = \frac{\sqrt{\frac{29000}{50}}}{50} = \frac{\sqrt{\frac{29000}{50}}}{(0.54 + \frac{10}{10})^{-10}} = \frac{\sqrt{\frac{29000}{50}}}{25,918 + \frac{10}{10}} = \frac{24.083189}{25.37200} = \frac{30.92}{10.920}$$

Subject:

Subtask: Section 62 4.000 L - Negative flexque checks

Prepared by:

Date:

Sheet No. 4 of

Calculate Fnu (LTB)

Find (LTB) =
$$C_{b} \left[1 - \left(1 - \frac{F_{yr}}{R_{h}} F_{yc} \right) \left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right] R_{b} R_{h} F_{yc} \leq R_{b} R_{h} F_{yc}$$

$$= (1.0) \left[1 - \left(1 - \frac{35 k_{5i}}{(0.99)(50 k_{5i})} \right) \left(\frac{20' - 7.9'}{29.7' - 7.9'} \right) \right] (1.0)(0.99)(50 k_{ci}) =$$

$$= (1.0) \left[1 - \left(0.293 \right) \left(0.555 - \right) \right) (49.5 k_{5i}) =$$

$$= (0.837) (49.5 k_{5i}) = \frac{41.45 k_{5i}}{41.45 k_{5i}} \quad \text{Vs. } 19.4 k_{5i} \quad \text{valualated}$$

$$= (0.837) (49.5 k_{5i}) = \frac{41.45 k_{5i}}{41.45 k_{5i}} \quad \text{Vs. } 19.4 k_{5i} \quad \text{valualated}$$

Note that Cb is taken as 1.0 in CSI bridge. In the

FHWA Example, Cb is calculated as 1.3, resulting in Fac (LTB) = 50 ksi.

move accumately

- Define layout line on straight alignment from 0ft to 240ft.
- Define "Span 1 Girder" and "Span 2 Girder" frame section as nonprismatic sections.
- Define "Span 1 Bridge Section" and "Span 2 Bridge Section" bridge deck sections.
- Added weight-less end diaphragms to stabilize the bridge before the deck is constructed.

Geometry - Groups

 Use the bridge object to define the following groups: Deck, Girders, Substructure, All But Deck

Geometry – Property Modifiers

The following sets of property modifiers were defined for area objects to allow simulating different types of sections during staged construction:

- "W 0, S 0": no weight, no stiffness
- "W 0, S 1/3": no weight, long-term stiffness
- "W 1, S 0": full weight, no stiffness
- "W 1, S 1": full weight, full (short-term) stiffness
- "W 1, S 1/3": full weight, long-term stiffness

Final Geometry

Dead Loads

Dead Loads

The following load cases were considered for dead load analysis

- "DC1a girders": girder self-weight acting on non-composite section. Calculated directly from the selfweight of the girders.
- "DC1b misc steel": weight of shear studs, cross-frames and bolts applied to non-composite section using 0.015 kips/ft per girder (or (0.015 kip/ft)(5 girders)/(46.875 ft width) = 0.0016 ksf).
- "DC1c forms": weight of forms. Applied as area load to the bridge object using 0.015ksf.
- "DC1d deck and haunch": weight of deck and haunches applied to non-composite section.
 Calculated directly from the self-weight of the deck, the haunch was neglected.
- "DC2 parapets": weight of parapets applied to long-term composite section using 0.5 kip/ft per parapet (or (0.5kip/ft)(2 parapets)/(46.875 ft width) = 0.0213 ksf).
- "DW fut. w. surface": weight of future wearing surface applied to long-term composite section
 using 0.0292 ksf applied over the roadway of 44ft width.

Load Patterns

Bridge Area Loads

Definition of dead loads using bridge area loads:

Bridge Design Action Types

The table below shows bridge design action types for individual load cases defined in the model:

Load Case	Bridge Design Action		
DC1a girders	Non-composite		
DC1b misc steel	Non-composite		
DC1c forms	Non-composite		
DC1d deck + haunch	Non-composite		
DC2 parapets	Long-Term Composite		
DW fut. w. surf.	Long-Term Composite		
LL 1 lane	Short-Term Composite		

Load Case "DC1a girders"

- This load case is used to apply the self-weight of the girders to non-composite section.
- Single-stage staged construction load case was used to add the entire structure except for the deck (note the the girders are stabilized by diaphragms) and then load the added structure by its self-weight.

Load Case "DC1b misc steel"

- This load case is used to apply the weight of shear studs, cross-frames, bolts, etc. to the non-composite section.
- The load was calculated as 0.0016ksf and is applied directly to the bridge deck via the "Bridge Loads" feature of the program.
- Single-stage staged construction load case was used to add the entire structure and then load deck by the above load. Note that the deck was added with negligible stiffness and zero weight to correctly model the non-composite section.

Load Case "DC1c forms"

- This load case is used to apply the weight of the forms to the non-composite section.
- The load was calculated as 0.015ksf and is applied directly to the bridge deck via the "Bridge Loads" feature of the program.
- Single-stage staged construction load case was used to add the entire structure and then load deck by the above load. Note that the deck was added with negligible stiffness and zero weight to correctly model the non-composite section.

Load Case "DC1d deck+haunch"

- This load case is used to apply the weight of the deck and haunches to the non-composite section.
- Single-stage staged construction load case was used to add the entire structure, make the stiffness of the deck negligible and apply the self-weight of the deck. Note that the deck was added with negligible stiffness to correctly model the non-composite section.
- The weight of the haunches is neglected, but it could be included by by applying bridge load to the deck that would represent the weight of the haunches.

Load Case "DC2 parapets"

- This load case is used to apply the weight of the parapets to the long-term composite section.
- The parapet load was calculated as 0.0213ksf and is applied directly to the bridge deck via the "Bridge Loads" feature of the program.
- Single-stage staged construction load case was used to add the entire structure, reduce the stiffness of the deck by a factor of 1/3 to model the long-term composite section and apply the above parapet load as uniform area load to the entire deck using the bridge load feature of the program.

Load Case "DW fut. w. surf."

- This load case is used to apply the weight of the future wearing surface to the long-term composite section.
- The future wearing surface load was calculated as 0.0292ksf and is applied directly to the bridge deck via the "Bridge Loads" feature of the program.
- Single-stage staged construction load case was used to add the entire structure, reduce the stiffness of the deck by a factor of 1/3 to model the long-term composite section and apply the above future wearing surface load as uniform area load to the entire deck using the bridge load feature of the program.

Verify Dead Load Results

 The dead load moments were compared against moments published on p. 3-18 of the FHWA design example and reasonable agreement was achieved. See the table on the next page.

Check Dead Load Results

Dead load moments for Interior Girder 1 [kip-ft]

Load Case	Location in Span 1		Location in Span 1	
	0.5L		1.0L	
	FHWA Example	CSI Bridge	FHWA Example	CSI Bridge
DC1a Steel Girder	124.4	114.8	-421.5	-402.4
DC1b Misc Steel (see note 1)	111.7	10.5	-357.1	-34.9
DC1c Forms	-	98.8	-	-326.8
DC1d Deck+Haunches	758.4	658.1	-2418.3	-2176.9
DC2 Parapets	163.8	157.7	-436.1	-420.8
DW Future Wearing Surface	198.4	216.2	-528.2	-576.8

Notes:

(1) FHWA Example includes both Misc Steel and Forms

Live Loads

Live Loads

The following load cases were considered for live load analysis:

 "LL - 1 lane": single lane is applied to the entire bridge and distribution into individual girders is considered in the design phase by using user-defined user distribution factors

Live load distribution factors

 User-specified live load distribution factors were used to match the factors used in the "FHWA LRFD Steel Bridge Design Example", p. 3-22

The following distribution were used:

- Interior girder moment: 0.696
- Exterior girder moment: 0.892
- Interior girder shear: 0.935
- Exterior girder shear: 0.795

Check Live Load Results

Check Live Load Effects for Interior Girder 1

	LLDF	Location in Span 1			Location in Span 1		
		0.5L				1.0L	
		FHWA Example CSI Bridge I			FHWA Example	CSH	3ridge
		-	Per Lane	Per Girder	-	Per Lane	Per Girder
Maximum Positive Moment [kip-ft]	0.696	1857	2741.4	1908.0	983	6.8	4.7
Maximum Negative Moment [kip-ft]	0.696	-968	-938.2	-653.0	-2450	-3375.8	-2349.6
Maximum Positive Shear [kips]	0.935	42.5	67.9	63.5	35.8	137.9	128.9
Maximum Negative Shear [kips]	0.935	-62.2	-37.3	-34.9	-131.4	-0.1	-0.1

- (1) LLDF stands for Live Load Distribution Factor
- (2) The yellow highligthed cells can still be considered to provide reasonable agreement between the FHWA Example and CSI Bridge if the following is considered:
 - FHWA example shears seems to follow different sign convention from CSI bridge
 - FHWA example maximum positive moment at 1.0L does not seem to be correct (it should be essentially zero)
 - FHWA example maximum positive shear at 1.0L does not seem to be correct (it should be essentially zero)

Strength Limit State

Strength Limit State Verification Approach

 Detailed verification of CSiBridge results was performed for locations at 0.417L (50') and 1.0L (120') of the first span that correspond to the locations of the maximum positive moment and the maximum negative moment.

Design Request Definition

 User-specified live load distribution factors (LLFD) were used to exactly match the LLDF used in the FHWA example.

Section at 0.417L (50') for G2 – Positive Flexure

- Checking procedure: CSiBridge output tables for girder G2 at station 50ft were printed (each intermediate parameter or result on one row) and the checked against independent hand calculations and spreadsheet calculations
- Reasonable agreement was achieved. See attachment with hand calculations for details.

Demands for G2 Section at 0.417L (50') – Positive Flexure

Load Case	Unfactored Moment [kip-ft]	Factor	Factored Moments [kip-ft]	Cumulative Factored Moments [kip-ft]	Model C Output (Staged Constr.)	Comment
a. DC1a girders	136.5					
a. DC1b misc steel	12.7					
a. DC1c forms	118.7					
a. DC1d deck+haunches	790.9					
a. DC1 total	1058.8	1.25	1323.5	1323.5	1309.9	
a. DC2 parapets	182.4	1.25	228.0	1551.5	1537.3	
a. DW fut. w. surface	250	1.5	375.0	1926.5	1911.4	
LL+I - 1 lane (0.696 distr. Factor) negative LL moment =	1963.07 -544.2	1.75	3435.4	5361.9		

Total for "a- Strength 1" load combination =

5361.9

Demands for G2 Section at 0.417L (50') – Shear

Load Case	Unfactored Shear [kips]	Factor	Factored Shear [kips]	Comment
a. DC1a girders	1.4			
a. DC1b misc steel	0.1			
a. DC1c forms	0.5			
a. DC1d deck+haunches	8.2			
a. DC1 total	10.2	1.25	12.75	
DC2 parapets	0.4	1.25	0.5	
a. DW fut. w. surface	0.5	1.5	0.75	
a. LL+I (0.935 distr. Factor)	40.39	1.75	70.7	

Total for "Strength 1" load combination =

Section at 1.000L (120') for G2 – Negative Flexure

- Checking procedure: CSiBridge output tables for girder G2 at station 120ft were printed (each intermediate parameter or result on one row) and the checked against independent hand calculations and spreadsheet calculations
- Reasonable agreement with hand calculations was achieved. See attachments for details.

Demands for G2 Section at 1.000L (120') – Negative Flexure

Load case	Unfactored Moment [kip-ft]	Factor	Factored Moments [kip-ft]	Cumulative Factored Moments [kip-ft]	Model C Output (Stage Constr.)	Comment
a. DC1a girders	-401.8					
a. DC1b misc steel	-34.3					
a. DC1c forms	-321.9					
a. DC1d deck+haunches	-2151.5					
a. DC1 total	-2909.5	1.25	-3636.9	-3636.9		
a. DC2 parapets	-423.5	1.25	-529.4	-4166.3		
a. DW fut. w. surface	-580.5	1.5	-870.8	-5037.0		
LL+I - 1 lane (0.696 distr. Factor)	-2345.32	1.75	-4104.3	-9141.3		

Total for "a-Strength 1" load combination =

-9141.3

Demands for G2 Section at 1.000L (120') – Shear

Load Case	Unfactored Shear	Factor	Factored Shear
	[kips]		[kips]
a. DC1a girders	16.2		
a. DC1b misc steel	1.1		
a. DC1c forms	10.3		
a. DC1d deck+haunches	75.0		
a. DC1 total	102.6	1.25	128.25
a. DC2 parapets	15	1.25	18.75
a. DW fut. w. surface	20.6	1.5	30.9
LL+I - 1 lane (0.935 distr. Factor)	123.61	1.75	216.31

FHWA Examp	ole (p. 3-31)
Unfactored Shear	Factored Shear
[kips]	[kips]
114.7	143.4
	20.5
16.4	20.5
19.8	29.7
131.4	230.0

Total for "a- Strength 1" load combination =

394.21

Sum = 423.5

Strength Limit State Summary - Flexure and Shear

Screenshots of Design Results

Screenshots of Design Results

 The following pages contain screenshots of selected design output from CSiBridge.

CSiBridge v15.1.0 Advanced w/Rating - models A, B, C V15.1.0 Y Bridge Object Response Display Select Bridge Object Bridge Model Type Show Tabular Display of Current Plot Units Area Object BOBJ1 Show Table... Kip, ft, F • Select Display Component Design/Rating Multivalued Options: Interior Girder 1 Show Results For C Envelope Max/Min Requests a_Strength 1 -Envelope Max C Stress Design/Rating C Force ☑ D/C Limit C Envelope Min. Show Selected Girder C Step Demand/Capacity Ratio - Positive Moment ▼ Bridge Response Plot BOBJ1 - a_Strength 1, AASHTQ LBFD 2007 Strength Check- Demand/Capacity Ratio : Positive Moment 0 Max Value = 0.8677 Min Value = 0. -1. × Mouse Pointer Location Snap Options: 50. Distance From Start of Bridge Object ▼ Snap to Computed Response Points 0.8677 Response Quantity Just Before Current Location Done 0.8677 Response Quantity Just After Current Location

SiBridge v15.1.0 Advanced w/Rating - models A, B, C V15.1.0_Y Bridge Object Response Display Select Bridge Object Bridge Model Type: Show Tabular Display of Current Plot Units: Area Object BOBJ1 Kip, ft, F Show Table... ▼| Select Display Component Design/Rating Multivalued Options: Show Results For Interior Girder 1 C Envelope Max/Min Requests a Strength 1 -Envelope Max C Stress Design/Rating ▼ D/C Limit C Force C Envelope Min Show Selected Girder C Step Demand/Capacity Ratio - Shear • Bridge Response Plot BOBJ1 - a Strength 1, AASHTO LRFD 2007 Strength Check-Demand/Capacity Ratio - Shear 1.5 0 -1.5 Max Value = 1,3007 Min Value = 0,2641 × Mouse Pointer Location Snap Options 90.5773 Distance From Start of Bridge Object ▼ Snap to Computed Response Points Response Quantity Just Before Current Location Done Response Quantity Just After Current Location

Strength Limit State - With Pours

 The analysis is similar to the Strength Limit State without pours, but the deck and hauch load is applied in pours.

Demands for G2 Section at 0.417L (50') – Positive Flexure

Load Case	Unfactored Moment [kip-ft]	Factor	Factored Moment	Cumulative Factored Moments [kip-ft]	Model C Output (Staged Constr.)	Comment
a. DC1a girders	136.5					
a. DC1b misc steel	12.7					
a. DC1c forms	118.7					
a. DC1d pour 1 (0-80)	1031.11					
a. DC1d pour 2 (160-240)	-366.47					
a. DC1d pour 3 (80-160)	99.15					
a. DC1 total	1031.69	1.25	1289.61	1289.6		
a. DC2 parapets	182.4	1.25	228	1517.6		
a. DW fut. w. surface	250	1.5	375	1892.6		
LL+I - 1 lane (0.696 distr. Factor)	1963.07	1.75	3435.37	5328.0		
negative LL moment =	-544.2					

Total for "a- Strength 1 (pours)" load combination =

5327.98

Demands for G2 Section at 1.000L (120') – Negative Flexure

Flata A1			Factored Moments	(Staged Constr.)	
[kip-ft]		[kip-ft]	[kip-ft]		
-401.79					
-33.51					
-314.24					
-762.79					
-894.49					
-552.18					
-2959	1.25	-3698.75	-3698.8		
-417.72	1.25	-522.15	-4220.9		
-572.65	1.5	-858.98	-5079.9		
-2336.22	1.75	-4088.39	-9168.3		
	-314.24 -762.79 -894.49 -552.18 -2959 -417.72	-33.51 -314.24 -762.79 -894.49 -552.18 -2959 1.25 -417.72 1.25	-33.51 -314.24 -762.79 -894.49 -552.18 -2959 1.25 -3698.75 -417.72 1.25 -522.15 -572.65 1.5 -858.98	-33.51 -314.24 -762.79 -894.49 -552.18 -2959 1.25 -3698.75 -3698.8 -417.72 1.25 -522.15 -4220.9 -572.65 1.5 -858.98 -5079.9	-33.51 -314.24 -762.79 -894.49 -552.18 -2959 1.25 -3698.75 -3698.8 -417.72 1.25 -522.15 -4220.9 -572.65 1.5 -858.98 -5079.9

Total for "a- Strength 1 (pours)" load combination =

-9168.26

Fatigue Limit State

Fatigue Limit State Summary - Web Fatigue

Vcr = 368.56 kips D/C ratio = 0.034

Service Limit State

Service Limit State Summary - Flexure

Constructability Limit State

General Comments

- Use Strength IV load combination for constructability limit state (high dead load to live load ratio); relevant AASHTO LRFD 2008 References:
 - Art. 3.4.1 (Load Factors and Load Combinations) on p. 3-8
 - Table 3.4.1-1 (Load Combinations and Load Factors) on p. 3-13
 - Art. 3.4.2 (Load Factors for Construction Loads) on p. 3.14-1
- Other References:
 - AASHTO LRFD 2008, Figure C6.4.1 (Flowchart for LRFD Article 6.10.3 -Constructibility)
 - FHWA Example p. 3-48 to 3-56

Demands for G2 Section at 0.417L (50') - Flexure

Load Case	Unfactored Moment	Factor	Cumulative Factored Moment	Comment
	[kip-ft]		[kip-ft]	
a. DC1a girders	136.77			
a. DC1b misc steel	12.36			
a. DC1c form	115.92			
a. DC1d deck+haunches	781.58			
a. DC1 total	1046.63	1.5	1569.95	The factored moment represents the "a- Strength 4" load combination

- (1) "a- Strength 4" load combination is used to obtain demands for the constructability limit state.
- (2) The above results were obtained from CSiBridge V15.1.0_S
- (3) G2 is interior girder 1

Demands for G2 Section at 1.000L (120') - Flexure

Load Case	Unfactored Moment	Factor	Cumulative Factored Moment	Comment
	[kip-ft]		[kip-ft]	
a. DC1a girders	-401.79			
a. DC1b misc steel	-33.57			
a. DC1c form	-314.7			
a. DC1d deck+haunches	-2127.89			
a. DC1 total	-2877.95	1.5	-4316.93	The factored moment represents the "a- Strength 4" load combination

- (1) "a- Strength 4" load combination is used to obtain demands for the constructability limit state.
- (2) The above results were obtained from CSiBridge V15.1.0_S.
- (3) G2 is interior girder 1

Demands for G2 Section at 1.000L (120') - Shear

Load Case	Unfactored Moment	Factor	Cumulative Factored Moment	Comment
	[kip-ft]		[kip-ft]	
a. DC1a girders	16.19			
a. DC1b misc steel	1.13			
a. DC1c form	10.62			
a. DC1d deck+haunches	75.04			
a. DC1 total	102.98	1.5	154.47	The factored moment represents the "a- Strength 4" load combination

- (1) "a- Strength 4" load combination is used to obtain demands for the constructability limit state.
- (2) The above results were obtained from CSiBridge V15.1.0_S.
- (3) G2 is interior girder 1

Constructability Limit State Summary - Flexure and Shear

G2 section at 50' (0.417L) Strength Limit State

C6.4.4 Flowchart for LRFD Article 6.10.6

Figure C6.4.4-1 Flowchart for LRFD Article 6.10.6—Strength Limit State.

C6.4.5 Flowchart for LRFD Article 6.10.7

Figure C6.4.5-1 Flowchart for LRFD Article 6.10.7—Composite Sections in Positive Flexure.

Parameter	Unit	Value Before Station	Value After Station
	01110	value belofe diation	Value Alter Station
DesReqName	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Status	Unitless	0	0
Message	Text	Design was performed and results are available, whether or not the design passed or failed.	Design was performed and result are available, whether or not the design passed or failed.

The results on the following 6 bages are four build M5.0.0_1F.

Parameter	Unit	Value Before Station	Value After Station
Demont	Tout	0, , , ,	
Request	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
BeamProp	Text	I-Girder 0.625in T	I-Girder 0.625in T
LLDFactM	Unitless	0.696	0.696
LLDFactV	Unitless	0.935	0.935
ASlabTri	ft2	6.5	6.5
ThSlab	ft	0.66667	0.66667
WSlabEff	ft	9.75	9.75
fcConcSlab	Kip/ft2	576	576
ESlab	Kip/ft2	519119.5	519119.5
nLongTerm	Unitless	3	3
ARebSlabTop	ft2	0	. 0
ARebSlabBot	ft2	0	0
/RebSlabTop	ft		
	ft	0	0
YRebSlabBot		0	0
fysLRebar	Kip/ft2	8640	8640
ABeam	ft2	0.3335	0.3335
EBeam	Kip/ft2	4176000	4176000
IxBeam	ft4	1.0668	1.0668
BeamRolled	Yes/No	No	No
ThFlgTop	ft	0.0521	0.0521
WdthFlgTop	ft	1.1667	1.1667
fyFlgTop	Kip/ft2	7200	7200
ThFlgBot	ft	0.0729	0.0729
WdthFlgBot	ft	1.1667	1.1667
fyFlgBot	Kip/ft2	7200	7200
fyrFlgBot	Kip/ft2	5040	5040
LamfBotFlg	Unitless	8.002058	8.002058
LampfBotFlg	Unitless	9.151612	9.151612
LamrfBotFlg	Unitless	16.119553	16.119553
kcBotFlg	Unitless	0.385054	0.385054
CmpctFlgBot	Yes/No	Yes	Yes
DepthWeb	ft	4.5	4.5
ThickWeb	ft	0.0417	
fyWeb	Kip/ft2	7200	0.0417
	ft		7200
DcpWebPos DcWebNeg	ft	0	0
DcWebNeg	ft	2.08172	2.08172
DcpWebNeg	Unitless	1.95902	1.95902
LamwWeb		99.842831	99.842831
ampwDcWeb	Unitless	72.202398	72.202398
mpwDcpWeb	Unitless	67.946726	67.946726
LamrwWeb	Unitless	137.274178	137.274178
mpctWebNeg	Yes/No	No	No
RpcWeb	Unitless	0	0
RptWeb	Unitless	0	0
rt	ft	0.29393	0.29393
J	ft4	0	0
RbPos	Unitless	1	1
RbNeg	Unitless	1	1
RhPos	Unitless	1	1
RhNeg	Unitless	0.985987	0.985987
CmpctGrdPos	Yes/No	Yes	Yes
mpctGrdNeg	Yes/No	Yes	Yes

BeamPBklShr	Yes/No	No	No
Lb	ft	20	20
Lr	ft	26.58006	26.58006
Lp	ft	7.07873	7.07873
MyNegTop	Kip-ft	3110.5085	3110.5085
MyNegBot	Kip-ft	3566.3448	3566.3448
MyNegCtr	Kip-ft	3110.5085	3110.5085
MyPos	Kip-ft	4731.7565	4731.7565
MuDCLTerm	Kip-ft	596.4576	596.4576
MuDNC	Kip-ft	1304.1114	1304.1114
PNADistNeg	ft	3.49931	3.49931
PNADistLmt	ft	2.2225	2.2225
PNADistPos	ft	0.503	0.503
MpNeg	Kip-ft	3892.4384	3892.4384
MpPos	Kip-ft	7506.8302	7506.8302
SxCompTNeg	ft3	0.431837	0.431837
SxCompBNeg	ft3	0.495122	0.495122
SxSTermTPos	ft3	10.383153	10.383153
SxSTermBPos	ft3	0.761928	0.761928
SxLTermTPos	ft3	2.211966	2.211966
SxLTermBPos	ft3	0.699063	0.699063
SxSteelTop	ft3	0.431837	0.431837
SxSteelBot	ft3	0.495122	0.495122

Parameter	Unit	Value Before Station	\/-l \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
rarameter	Offic	value Before Station	Value After Station
Request	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Strength 1	c Strength 1
StepType	Text	Max	Min
Step	Text	0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.7.1.1-1 Compact Section Positive Flexure	6.10.7.1.1-1 Compact Section Positive Flexure
MuPos	Kip-ft	5340.5274	5340.5274
fl	Kip/ft2	0	0
MrPos	Kip-ft	6151.2834	6151,2834
Pu	Kip	0	0
MuNonComp	Kip-ft	0	0
MuLTerm	Kip-ft	0	0
MuSTerm	Kip-ft	0	0
fbuComp	Kip/ft2	0	0
fbuTens	Kip/ft2	0	0
FrcPos	Kip/ft2	0	0
FrtPos	Kip/ft2	0	0
DCRatio	Unitless	0.868197	0.868197

Parameter	Unit	Value Defere Station	V.1. 45 0: ::
rarameter	Onit	Value Before Station	Value After Station
Request	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Strength 1	c Strength 1
StepType	Text	Max	Max
Step	Text	0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.8.2.3-2 Bottom Flange Lateral Torsional Buckling	6.10.8.2.3-2 Bottom Flange Latera Torsional Buckling
MuNeg	Kip-ft	0	0
fl	Kip/ft2	0	0
MncFLB	Kip-ft	0	0
MncLTB	Kip-ft	0	0
MrcNeg	Kip-ft	0	0
MrtNeg	Kip-ft	0	0
Pu	Kip	2.347E-08	4.145E-09
MuNonComp	Kip-ft	0	0
MuLTerm	Kip-ft	0	0
MuSTerm	Kip-ft	0	0
fbuComp	Kip/ft2	0	0
fbuTens	Kip/ft2	0	0
FncFLB	Kip/ft2	7099.11	7099.11
FncLTB	Kip/ft2	5734.78	5734.78
FrcNeg	Kip/ft2	5734.78	5734.78
FrtNeg	Kip/ft2	7099.11	7099.11
DCRatio	Unitless	0	0

Parameter	Unit	Value Before Station	Value After Ctation
raiametei	Onit	value before Station	Value After Station
Request	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Strength 1	c Strength 1
StepType	Text	Max	Min
Step	Text	0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.9.2-1	6.10.9.2-1
PanelType	Text	Unstiffened	Unstiffened
Vu	Kip	84.393	114.07
Vr	Kip	306.502	306.502
Vcr	Kip	306.502	306.502
Vp	Kip	783.949	783.949
С	Unitless	0.390971	0.390971
k	Unitless	5	5
d0	ft	0	0
d0req	ft	0	0
VrWithD0req	Kip	306.502	306.502
DCRatio	Unitless	0.275342	0.372168

G2 section at 120' (1.000L) Strength Limit State

C6.4.4 Flowchart for LRFD Article 6.10.6

Figure C6.4.4-1 Flowchart for LRFD Article 6.10.6—Strength Limit State.

C6.4.6 Flowchart for LRFD Article 6.10.8

Figure C6.4.6-1 Flowchart for LRFD Article 6.10.8—Composite Sections in Negative Flexure and Noncomposite Sections.

Figure C6.4.6-1 (continued) Flowchart for LRFD Article 6.10.8—Composite Sections in Negative Flexure and Noncomposite Sections.

Parameter	Unit	Value Before Station	Value After Station
DesReqName	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	120	120
Location	Text	Before	After
Status	Unitless	0	0
Message	Text	Design was performed and results are available, whether or not the design passed or failed.	Design was performed and results are available, whether or not the design passed or failed.

The results on the following 6 bages over for build M5.0.0-1F.

Parameter	Unit	Value Before Station	Value After Station
Request	Text	Observable 4	
	Text	Strength 1	Strength 1
BridgeObj		BOBJ1	BOBJ1
Station	ft	120	120
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
BeamProp	Text	I-Girder 2.5in T	I-Girder 2.5in T
LLDFactM	Unitless	0.696	0.696
LLDFactV	Unitless	0.935	0.935
ASlabTri	ft2	6.5	6.5
ThSlab	ft	0.66667	0.66667
WSlabEff	ft	9.75	9.75
fcConcSlab	Kip/ft2	576	576
ESlab	Kip/ft2	519119.5	519119.5
nLongTerm	Unitless	3	3
RebSlabTop	ft2	0	0
RebSlabBot	ft2	0	0
(RebSlabTop	ft	0	0
YRebSlabBot	. ft	0	0
fysLRebar	Kip/ft2	8640	8640
ABeam	ft2	0.6981	
EBeam	Kip/ft2		0.6981
IxBeam	ft4	4176000	4176000
		3.155525	3.155525
BeamRolled	Yes/No	No	No
ThFlgTop	ft	0.2083	0.2083
WdthFlgTop	ft	1.1667	1.1667
fyFlgTop	Kip/ft2	7200	7200
ThFlgBot	ft	0.2292	0.2292
WdthFlgBot	ft	1.1667	1.1667
fyFlgBot	Kip/ft2	7200	7200
fyrFlgBot	Kip/ft2	5040	5040
LamfBotFlg	Unitless	2.545157	2.545157
LampfBotFlg	Unitless	9.151612	9.151612
LamrfBotFlg	Unitless	16.119553	16.119553
kcBotFlg	Unitless	0.385054	0.385054
CmpctFlgBot	Yes/No	Yes	Yes
DepthWeb	ft	4.5	4.5
ThickWeb	ft	0.0417	0.0417
fyWeb	Kip/ft2	7200	7200
DcpWebPos	ft	0	0
DcWebNeg	ft	2.16377	2.16377
OcpWebNeg	ft	1.95763	
LamwWeb	Unitless	103.777764	1.95763
ampwDcWeb	Unitless	95.593501	103.777764
mpwDcpWeb	Unitless		95.593501
LamrwWeb	Unitless	86.48636	86.48636
npctWebNeg	Yes/No	137.274178	137.274178
	Unitless	No	No
RpcWeb		0	0
RptWeb	Unitless	0	0
rt	ft	0.32814	0.32814
J	ft4	0	0
RbPos	Unitless	1	1
RbNeg	Unitless	1	1
RhPos	Unitless	1	1
RhNeg	Unitless	0.995361	0.995361
mpctGrdPos	Yes/No	Yes	Yes
npctGrdNeg	Yes/No	Yes	Yes

BeamPBklShr	Yes/No	Yes	Yes
Lb	ft	20	20
Lr	ft	29.674	29.674
Lp	ft	7.90269	7.90269
MyNegTop	Kip-ft	8932.5399	8932.5399
MyNegBot	Kip-ft	9498.3148	9498.3148
MyNegCtr	Kip-ft	8932.5399	8932.5399
MyPos	Kip-ft	12630.7233	12630.7233
MuDCLTerm	Kip-ft	-1341.4861	-1341.4861
MuDNC	Kip-ft	-3567.8914	-3567.8914
PNADistNeg	ft	3.50071	3.50071
PNADistLmt	ft	2.35375	2.35375
PNADistPos	ft	0.85978	0.85978
MpNeg	Kip-ft	10170.3594	10170.3594
MpPos	Kip-ft	14020.0069	14020.0069
SxCompTNeg	ft3	1.240119	1.240119
SxCompBNeg	ft3	1.318667	1.318667
SxSTermTPos	ft3	6.768451	6.768451
SxSTermBPos	ft3	1.624842	1.624842
SxLTermTPos	ft3	2.831093	2.831093
SxLTermBPos	ft3	1.513569	1.513569
SxSteelTop	ft3	1.240119	1.240119
SxSteelBot	ft3	1.318667	1.318667

Parameter	Unit	Value Before Station	Value After Station
Request	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	120	120
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Strength 1	c Strength 1
StepType	Text	Max	Max
Step	Text	0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.7.1.1-1 Compact Section Positive Flexure	6.10.7.1.1-1 Compact Section Positive Flexure
MuPos	Kip-ft	0	0
fl	Kip/ft2	0	0
MrPos	Kip-ft	14020.0069	14020.0069
Pu	Kip	0	0
MuNonComp	Kip-ft	0	0
MuLTerm	Kip-ft	0	0
MuSTerm	Kip-ft	0	0
fbuComp	Kip/ft2	0	0
fbuTens	Kip/ft2	0	0
FrcPos	Kip/ft2	0	0
FrtPos	Kip/ft2	0	0
DCRatio	Unitless	0	0

Parameter	Unit	Value Before Station	Value After Station
_	_		
Request	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	120	120
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Strength 1	c Strength 1
StepType	Text	Min	Max
Step	Text	0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.8.2.3-2 Bottom Flange Lateral Torsional Buckling	6.10.8.2.3-2 Bottom Flange Latera Torsional Buckling
MuNeg	Kip-ft	0	0
fl	Kip/ft2	0	0
MncFLB	Kip-ft	0	0
MncLTB	Kip-ft	0	0
MrcNeg	Kip-ft	0	0
MrtNeg	Kip-ft	0	0
Pu	Kip	4.093E-09	2.878E-08
MuNonComp	Kip-ft	-3567.8914	-3567.8914
MuLTerm	Kip-ft	-1341.4861	-1341.4861
MuSTerm	Kip-ft	-4088.1451	-4088.1451
fbuComp	Kip/ft2	-6820.38 (-44.36Kbi)	-6820.38
fbuTens	Kip/ft2	7252.38 (50.36 kg)	7252.38
FncFLB	Kip/ft2	7166 6 /10 7/10	7166.6
FncLTB	Kip/ft2	5984.95 (41.56 ksi)	5984.95
FrcNeg	Kip/ft2	5984.95 (41.56 Ks)	5984.95
FrtNeg	Kip/ft2	7166.6 (49.76 Ksi	7166.6
DCRatio	Unitless	1.13959	1.13959

Parameter	Unit	Value Before Station	Value After Station
Request	Text	Strength 1	Strength 1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	120	120
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Strength 1	c Strength 1
StepType	Text	Max	Max
Step	Text	0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.9.2-1	6.10.9.2-1
PanelType	Text	Unstiffened	Unstiffened
Vu	Kip	391.283	391.284
Vr	Kip	306.502	306.502
Vcr	Kip	306.502	306.502
Vp	Kip	783.949	783.949
С	Unitless	0.390971	0.390971
k	Unitless	5	5
d0	ft	0	0
d0req	ft	13.5	13.5
VrWithD0req	Kip	462.543	462.543
DCRatio	Unitless	1.276611	1.276612

G2 sections at 0.417L and 1.000L Fatigue Limit State

C6.4.2 Flowchart for LRFD Article 6.10.4

Figure C6.4.2-1 Flowchart for LRFD Article 6.10.4 Service Limis State.

		•	
TABLE: Bridge Super [esian 01 -	Design Result Status	
IABLE. Bridge ouper E	coign or	Dooigii reoduit Otatao	
DesReqName	Text	Fatique	Fatique
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Status	Unitless	0	0
Message	Text	Design was performed and	Design was performed and
Wicobago		results are available, whether	results are available, whethe
		or not the design passed or	or not the design passed or
		failed.	failed.
	-	idiicu.	idiled.
TARI F. Bridge Super [Design 36 -	AASHTOLRFD07 - SteellComp	WehFatique
TABLE. Bridge Cuper i	Jeoigii ee	/ Company	l de la company
Request	Text	Fatique	Fatique
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Girder	Text	Interior Girder 1 √	Interior Girder 1 √
Combo	Text	c Fatigue v	c Fatigue ✓
StepType	Text	Min	Min
Step	Text	0	0
DSet	Text	Fatigue Combo	Fatigue Combo
CodeEqtn	Text	6.10.9.3.3-1	6.10.9.3.3-1
PanelType	Text	Internal Stiffened	Internal Stiffened
LLDFactV	Unitless	0.625	0.625
EBeam	Kip/ft2	4176000	4176000
DepthWeb	ft	4.5	4.5
ThickWeb	ft	0.0417	0.0417
fyWeb	Kip/ft2	7200	7200
C	Unitless	0.470143	0.470143
k	Unitless	6.0125	6.0125
, d0	ft	10	10
Vp	Kip	783.949	783.949
Vcr	Kip	368.568	368.568
Vu	Kip	12.892	12.878
DCRatio	Unitless	0.034978	0.034942

see the
studyth
check
(acles similar
except fou

The stittenen spacing was entered as 10' on the optimization form.

TABLE: Bridge Super	Design 01 -	Design Result Status	
Dilago capo.			
DesReqName	Text	Fatique	Fatique
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	110	120
Location	Text	After	After
Status	Unitless	0	0
Message	Text	Design was performed and results are available, whether or not the design passed or failed.	Design was performed and results are available, whethe or not the design passed or failed.
		•	
Request	Text Text	Fatique BOR I1	Fatique BOR I1
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	120	120
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Fatigue	c Fatigue
StepType	Text	Max	Max
Step	Text	0	0
DSet	Text	Fatigue Combo	Fatigue Combo
CodeEqtn	Text	6.10.9.3.3-1	6.10.9.3.3-1
PanelType	Text	Internal Stiffened	Internal Stiffened
LLDFactV	Unitless	0.625	0.625
EBeam	Kip/ft2	4176000	4176000
DepthWeb	ft	4.5	4.5
ThickWeb	ft	0.0417	0.0417
fyWeb	Kip/ft2	7200	7200
С	Unitless	0.470143	0.470143
k	Unitless	6.0125	6.0125
d0	ft	10	10
uo		_22.7.1	
Vp	Kip	783.949	783.949
Vp Vcr	Kip	783.949 368.568	783.949 368.568
Vp			

G2 sections at 0.417L and 1.000L Service Limit State

C6.4.2 Flowchart for LRFD Article 6.10.4

Figure C6.4.2-1 Flowchart for LRFD Article 6.10.4 Service Limis State.

TABLE: Bridge Super D	esign 01 -	Design Result Status	- FungacoC (v., 21 points .1
DesRegName	Text	Service	Service
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	-50	50
Location	Text	Before	After
Status	Unitless	0	0
Message	Text	Design was performed and results are available, whether or not the design passed or failed.	Design was performed and results are available, whether or not the design passed or failed.
TABLE: Bridge Super D	esign 33 -	AASHTOLRFD07 - SteellComp	Serv-Prop
Request	Text	Service	Service
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
BeamProp	Text	I-Girder 0.625in T	I-Girder 0.625in T
LLDFactM	Unitless	0.686017	0.686017
LLDFactV	Unitless	0.934898	0.934898
ASlabTri	ft2	6.5	6.5
ThSlab	ft	0.66667	0.66667
WSlabEff	ft	9.75	9.75
fcConcSlab	Kip/ft2	576	576
ESlab	Kip/ft2	519119.5	519119.5
nLongTerm	Unitless	3	3
ARebSlabTop	ft2	0	0
ARebSlabBot	ft2	0	0
YRebSlabTop	ft	0	0
YRebSlabBot	ft	0	Ö
fysLRebar	Kip/ft2	8640	8640
ABeam	ft2	0.3335	0.3335
EBeam	Kip/ft2	4176000	4176000
IxBeam	ft4	1.0668	1.0668
BeamRolled	Yes/No	No	No
ThFlgTop	ft	0.0521	0.0521
WdthFlgTop	ft	1.1667	1.1667
fyFlgTop	Kip/ft2	7200	7200
ThFlgBot	ft	0.0729	0.0729
WdthFlgBot	ft	1.1667	1.1667
fyFlgBot	Kip/ft2	7200	7200
fyrFlgBot	Kip/ft2	5040	5040
LamfBotFlg	Unitless	8.002058	8.002058
	Unitless	9.151612	9.151612
LampfBotFlg LamrfBotFlg	Unitless	16.119553	16.119553
Laminbourig	Unitless	0.385054	0.385054

CmpctFlgBot	Yes/No	Yes	Yes
DepthWeb	ft	4.5	4.5
ThickWeb	ft	0.0417	0.0417
fyWeb	Kip/ft2	7200	7200
DcpWebPos	ft	X 0	0 49%
DcWebNeg	ft	2.08172	2.08172
DcpWebNeg	ft	1.95902	1.95902
LamwWeb	Unitless	99,842831	99.842831
LampwDcWeb	Unitless	72,202398	72.202398
LampwDcpWeb	Unitless	67.946726	67.946726
LamrwWeb	Unitless	137.274178	137.274178
CmpctWebNeg	Yes/No	No	No
RpcWebNeg	Unitless	0	0
RptWeb	Unitless	0	0
-	ft	0.29393	0.29393
rt	ft4		
J Cate C	Unitless	0	0
RbPos		1	1
RbNeg	Unitless	1	1
RhPos	Unitless	1	1
RhNeg	Unitless	0.985987	0.985987
CmpctGrdPos	Yes/No	Yes	Yes
CmpctGrdNeg	Yes/No	Yes	Yes
SxSteelBot	ft3	0.495122	0.495122
SxSteelTop	ft3	0.431837	0.431837
SxLTermBPos	ft3	0.699063	0.699063
SxLTermTPos	ft3	2.211966	2.211966
SxSTermBPos	ft3	0.761928	0.761928
SxSTermTPos	ft3	10.383153	10.383153
SxCompBNeg	ft3	0.495122	0.495122
SxCompTNeg	ft3	0.431837	0.431837
MpPos	Kip-ft	7506.8302	7506.8302
MpNeg	Kip-ft	3892,4384	3892.4384
PNADistPos	ft	0.503	0.503
PNADistLmt	ft	2.2225	2.2225
PNADistNeg	ft	3.49931	3.49931
MuDNC	Kip-ft	1304.1114	1304.1114
MuDCLTerm	Kip-ft	596,4576	596.4576
MyPos	Kip-ft	4731.7565	4731.7565
	Kip-ft	3110.5085	3110.5085
MyNegCtr	Kip-ft		3566.3448
MyNegBot	Kip-ft	3566.3448	The state of the s
MyNegTop	ft	3110.5085	3110.5085
Lp		0	0
Lr	ft	0	0
	ft	20	20
Lb BeamPBklShr	Yes/No	No	No

Request	Text	Service√	Service
BridgeObj	Text	BOBJ1V	BOBJ1
Station	ft	50 🗸	50 Vollsiz
Location	Text	Before √	After V
Girder	Text	Interior Girder 1	Interior Girder 1V
Combo	Text	c Service 2 √	c Service 2
StepType	Text	Max	Mingy least
Step	Text	0	Step 0
DSet OO aM	Text	Ms Combo √	Ms Combo V
CodeEqtn	Text	6.10.4.2.22 Bottom Steel	6.10.4.2.22 Bottom Steel
	Flange o	Flange of Composite Section	Flange of Composite Section
Pu	Kip	2.822E-08	2.822E-08
MuNonComp	Kip-ft	1043.2891	1043.2891
MuLTerm	Kip-ft	427.7048√	427.7048
MuSTerm	Kip-ft	2518.7441√	2518.7441
ffTop	Kip/ft2	-2850.7 (-19.8ksi)	-2850.7
ffBot	Kip/ft2	6022.23 (41.8 ksi)	6022.23
fl 82 220d	Kip/ft2	0	0 10811
fDeck	Kip/ft2	-100.19 (-0.7ksi)	-100.19
FrTop	Kip/ft2	6840 (47.5Ksi)	6840
FrBot 0480	Kip/ft2	6840 (47.5k4i)	6840
DCRatio	Unitless	0.880443	0.880443

45.19.6 in spord. 45.42.2 in spord.

15: 47.5 in spool.

moment demands on noncomposite, long terms composite, and short-term composite sections

Mu Steven = (2745.8 k-tt) (0.6860 distu. Factor) (1.3) = (188362)(1.3) = t service 2 factor = 2448.7k-tt

FFED: top tlange compression stress extlust lateral bending tFBot. bottom flange tension stress without lateral bending f Deck: top slab tiber compression stress

the bottom thange lateral bending stress

For Top: flexural resistance stoess of top compression flage for bositive moment. For Bot: tlexural resistance of bottom tension tlange for positive moment.

TABLE: Bridge Super D	Design 35 -	AASHTOLRFQ07 - SteellComp	Serv-FlexNeg
Request	Text	Service	Service
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Service 2	c Service 2
StepType	Text	Max	Max
Step	Text	0	0
DSet	Text	Ms Combo	Ms Combo
CodeEgtn	Text	6.10.4.2.22 Bottom Steel	6.10.4.2.22 Bottom Steel
notion a sognow	U 593613	Flange of Composite Section	Flange of Composite Sectio
Pu	Kip	2.822E-08	1.453E-08
MuNonComp	Kip-ft	1043.2891	1043.2891
MuLTerm	Kip-ft	427.7048	427.7048
MuSTerm	Kip-ft	2518.7441	-692.9148
ffTop	Kip/ft2	0	0
ffBot	Kip/ft2	. 0	Ō
fl	Kip/ft2	0	0
fDeck	Kip/ft2	0	9.02
FrTop	Kip/ft2	6744.15	6744.15
FrBot	Kip/ft2	6744.15	6744.15
Dc	ft	0	0
k	Unitless	0	0
Fcrw	Kip/ft2	7099.11	7099.11
DCRatio	Unitless	0	0

TARLE Bridge Comme		Desire Devil Office Conico C	Manian Suma Nation
TABLE: Bridge Super D	esign 01 -	Design Result Status Angleod	- to ubisar radius abutto ::
DesReqName	Text	Service	Service 109 9290
BridgeObj	Text	BOBJ1	BOBJ10agona
Station St	ft	120	Station 021
Location	Text	Before	After of soci
Status	Unitless	0	Status 0 Unitless
	Text	Design was performed and	Design was performed and
e available, whether	results an	results are available, whether	results are available, whether
e design passed or	di ton io	or not the design passed or	or not the design passed or
parat		failed.	failed.
TARI E: Bridge Super D	lesian 33 -	AASHTOLRFD07 - SteellComp	Serv-Pron
TABLE. Bridge Super B	gor9-vre8	AASHTOLREDON - SteelfComp	Bridge Super Design 33 -
Request	Text	Service	Service
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	120	120 0 90 18
Location	Text	Before	After
Girder 1911A	Text	Interior Girder 1	Interior Girder 1
BeamProp	Text	I-Girder 2.5in T	I-Girder 2.5in T
LLDFactM 10511	Unitless	0.737113	0.737113
LLDFactV	Unitless	0.934898	0.934898
ASlabTri	ft2	6.5	6.5 De - 0 11
ThSlab 3	ft	0.66667	0.66667
WSlabEff	ft	9.75	9.75
fcConcSlab	Kip/ft2	576	576 Idal 2W
ESlab 373	Kip/ft2	519119.5	519119.5
nLongTerm	Unitless	2 0 3 1 3	ESIAD 8 MARKET
ARebSlabTop	ft2	0	arong term of the search
ARebSlabBot	ft2	0	ARebSisb10
YRebSlabTop	ft	• 0	ARebStabBo av
YRebSlabBot	ft	0	YRobSlab1 o
fysLRebar	Kip/ft2	8640	8640
ABeam	ft2	0.6981	0.6981
EBeam	Kip/ft2	4176000	4176000
IxBeam	ft4	3.155525	3.155525
BeamRolled	Yes/No	No.	Nomeela
ThFlgTop	ft	0.2083	0.2083
WdthFlgTop	ft	1.1667	1.1667
fyFlgTop	Kip/ft2	7200	7200
ThFlgBot	ft	0.2292	0.2292
WdthFlgBot	ft	1.1667	1.1667
fyFlgBot	Kip/ft2	7200	7200
fyrFlgBot	Kip/ft2	5040	5040
LamfBotFlg	Unitless	2.545157	2.545157
LampfBotFlg	Unitless	9.151612	9.151612
LamrfBotFlg	Unitless	16.119553	16.119553
kcBotFlg	Unitless	0.385054	0.385054

	CmpctFlgBot	Yes/No	Yes	Yes
	DepthWeb	ft	4.5	CM2eY 4.53gHtpgmi
	ThickWeb	ft	0.0417	0.0417\/mage0
	fyWeb	Kip/ft2	7200	7200
	DcpWebPos	ft	0.0+	FWeb 0 April
	DcWebNeg	ft	2.16377	2.16377
	DcpWebNeg	ft	1.95763	1.95763
	LamwWeb	Unitless	103.777764	103.777764
-	LampwDcWeb	Unitless	95.593501	95.593501
	LampwDcpWeb	Unitless	86.48636	86.48636
-	LamrwWeb	Unitless	137.274178	137.274178
		Yes/No	No 8	No V/warrs.1
_	CmpctWebNeg	Unitless		city on Manual
	RpcWeb //		00	90.10011
	RptWeb	Unitless	0	<u> </u>
	rt 0	ft	0.32814	0,32814
	0 32814 L	ft4	0.00414	0
	RbPos	Unitless	11	1
	RbNeg	Unitless	11	RoPos r Uniters
	RhPos	Unitless	1	RbNeg 1 Unifiess
	RhNeg	Unitless	0.995361	0.995361
	CmpctGrdPos	Yes/No	Yes	Yes
	CmpctGrdNeg	Yes/No	Yes	Yes Li Ologni
	SxSteelBot	ft3	1.318667	1,318667
	SxSteelTop	ft3	1.240119	1.240119
	SxLTermBPos	ft3	1.513569	1.513569
	SxLTermTPos	ft3	2.831093	2.831093
	SxSTermBPos	ft3	1.624842	1.624842
	SxSTermTPos	ft3	6.768451	6.768451
		ft3	1.318667	1.318667
	SxCompBNeg	ft3	1.240119	1.240119
	SxCompTNeg	Kip-ft		
	MpPos		14020.0069	14020,000
	MpNeg 020A1	Kip-ft	10170.3594	10170.5554
	PNADistPos	ft	0.85978	0.85978
	PNADistLmt 8	ft	2.35375	2.35375
	PNADistNeg	ft	3.50071	3.50071
	MuDNC 003 8	Kip-ft	-3567.8914	-3567.8914
	MuDCLTerm	Kip-ft	-1341.4861	-1341.4861
	MyPos	Kip-ft	12630.7233	12630,7233
	MyNegCtr	Kip-ft	8932.5399	8932.5399
	MyNegBot	Kip-ft	9498.3148	9498.3148
	MyNegTop 8848	Kip-ft	8932.5399	8932.5399
	8932 539 q J	ft	6629 068	MyNeg Lo 0 No-R
	Lr	ft	.0	0 9
	Lb 0	ft	20	20
	BeamPBklShr	Yes/No	Yes	Yes
	Dealili, DVIOIII	. 55.75	100	CW894 The Water
	651			

Request	Text	Service	Text	Service
BridgeObj	Text	BOBJ1	txel	BOBJ10 apon8
Station OS	ft	120	n n	Station 0S1
Location of A	Text	Before	txs	Afteriodscoul
Girder and	Text	Interior Girder 1	Text	Interior Girder 1
Combo	Text	c Service 2	Text	c Service 2
StepType	Text	Max	Text	Max (T) Get 8
Step	Text	0	Text	Step 0
DSet mod aM	Text	Ms Combo	Text	Ms Combo
CodeEqtn	Text	6.10.4.2.22 Bottom Steel	6.10.4	4.2.22 Bottom Stee
Composite Section	Flange of	Flange of Composite Section	Flange	of Composite Section
Pu	Kip	2.826E-08	_	1.017E-09
MuNonComp	Kip-ft	-2854.3132	Kip	-2854.3132
MuLTerm	Kip-ft	-961.946	N:0-18	-961.946
MuSTerm	Kip-ft	8.536	R-001	-3216.3003
3216.30 qoTft	Kip/ft2	0 8	400	MUSTerm 0
ffBot	Kip/ft2	0	Kip/ft2	0 9011
fl O	Kip/ft2	0	KID/#2	0 10917
f Deck	Kip/ft2	0	SWOOL	0
FrTop	Kip/ft2	6840	CANTA	6840
FrBot 0488	Kip/ft2	6840	XIP/92	6840
DCRatio	Unitless	0 0	Kiphti	0 10813
0		40	Distinct	OCRatic

Request	Text	Service	Sei	vice P99
BridgeObj 08	Text	BOBJ1		BJ1 egbna.
Station 021	ft	120	1	20 notest2
Location	Text	Before	A Text	fterollsool
	Text	Interior Girder 1		Girder 1
Combo	Text	c Service 2		rvice 2
StepType	Text	-Min		lax
Step	Text	0		Step 0
Ms Com taga	Text	Ms Combo	Ms C	Combo
CodeEqtn	txeT 4 2	6.10.4.2.22 Bottom Steel Flange of Composite Section	6.10.4.2.22	Bottom Steel nposite Section
Pu	Kip	1.452E-08		7E-09
MuNonComp	Kip-ft	-2854.3132 √		4.3132
MuLTerm 1885	Kip-ft	-961.946 √		1.946
MuSTerm	Kip-ft	-3216.3003 √	the state of the s	3.3003
3218.30 qoTff	Kip/ft2	803115.33 (21.63ks)		15.33 T2UM
ffBot 8 3118	Kip/ft2	-4777.58 (+33.18k		77.58
-4777 58 lt	Kip/ft2	40.58		o toatt
fDeck	Kip/ft2	87.78 (0.61 ksi	87 Kip/fi2	7.78
FrTop87.78	Kip/ft2	6808.27 (47.28Ksi	680	08.27
FrBot 2 808a	Kip/ft2	6808.27 (47.28ks		08.27
Dc 72.8088	ft	2.75947 (\$3.44")		5947
275947 x	Unitless	23.934057	23.9	34057
Fcrw 0488 82	Kip/ft2	7166.6 (49.77)	51 Jalanu 71	66.6
DCRatio O	Unitless	0.701731	0.70)1731
0 701731		0 701131	18 Kg	DCRatio
uses are calculative	ed usi	iste, long teum composite, acctions ng section properties the concrete slab a	705	7018 ok/
to vesist	Leusion.	When slab does not	pesist to	ision, the s

Service for G2 Sections at 0.417L and 1.000L V15.0.0_1W pivoted Pivoted Tables

Forw

4/4

G2 sections at 0.417L and 1.000L Constructibility Limit State

C6.4 FLOWCHARTS FOR FLEXURAL DESIGN OF I-SECTIONS

C6.4.1 Flowchart for LRFD Article 6.10.3

Figure C6.4.1-1 Flowchart for LRFD Article 6.10.3—Constructibility.

ABLE: Bridge Super [Design 01 -	Design Result Status		_
DesReqName	Text	a_ Constr √	Text	a_ Constr
BridgeObj	Text	BOBJ1 V	Text	BOBJ1
Station	ft	50 🗸	in	600
Location	Text	Before √	Text	Before
Status	Unitless	0	Unitless	0
Message	Text	Design was v performed and results are available, whether or not the design passed or failed.	Text	Design was performed an results are available, whether or no the design passed or failed.

	Request	Text	a_ Constr		Text	a_ Constr
1	BridgeObj	Text	BOBJ1		Text	BOBJ1
	Station	ft	50	7	in	600
	Location	Text	Before		Text	Before
	Girder	Text	Interior Girder	•	Text	Interior Girde
	BeamProp	Text	I-Girder 0.625in T		Text	I-Girder 0.625in T
	ASlabTri	ft2	6.5		in2	936
	ThSlab	ft	0.66667		in	8.00004
	WSlabEff	ft	9.75		in	117
	fcConcSlab	Kip/ft2	576		kip/in2 (ksi)	4
	ESlab	Kip/ft2	519119.5		kip/in2 (ksi)	3604.996528
	ABeam	ft2	0.3335		in2	48.024
	EBeam	Kip/ft2	4176000		kip/in2 (ksi)	29000
	IxBeam	ft4	1.0668		ft4	1.0668
	BeamRolled	Yes/No	No		Yes/No	No
	ThFlgTop	ft	0.0521		in	0.6252
	WdthFlgTop	ft	1.1667	-	in	14.0004
	fyFlgTop	Kip/ft2	7200		kip/in2 (ksi)	50
	fyrFlgTop	Kip/ft2	5040		kip/in2 (ksi)	35
	LamfFlgTop	Unitless	11.196737		Unitless	11.196737
	LampfFlgTop	Unitless	9.151612		Unitless	9.151612
	LamrfFlgTop	Unitless	16.119553		Unitless	16.119553
	CmpctFlgTop	Yes/No	No	•	Yes/No	No
	ThFlgBot	ft	0.0729		in	0.8748
	WdthFlgBot	ft	1.1667		in	14.0004
	fyFlgBot	Kip/ft2	7200		kip/in2 (ksi)	50
	fyrFlgBot	Kip/ft2	5040		kip/in2 (ksi)	35
	LamfFlgBot	Unitless	8.002058		Unitless	8.002058
	LampfFlgBot	Unitless	9.151612		Unitless	9,151612
	LamrfFlgBot	Unitless	16.119553		Unitless	16.119553
	CmpctFlgBot	Yes/No	Yes		Yes/No	Yes
	DepthWeb	ft	4.5		in	54
	ThickWeb	ft	0.0417		in	0.5004
	fyWeb	Kip/ft2	7200		kip/in2 (ksi)	50
Г	RbPos	Unitless	1		Unitless	1
	RbNeg	Unitless	1		Unitless	1 ,
1	Lb	ft	20		in	240

vs. 240" in sprd

ABLE: Bridge Super [esign 42 -	AASHTOLRFD07	7 - Steel	ICompCstrNSt	g-FlxPs
		-			
Request	Text	a_ Constr	•	Text	a_ Constr
BridgeObj	Text	BOBJ1		Text	BOBJ1
Station	ft	50		in	600
Location	Text	Before		Text	Before
Girder	Text	Interior Girder		Text	Interior Girde
Combo	Text	a- Strength 4		Text	a- Strength 4
Label	Text			Text	0
Step	Text	0		Text	0
DSet	Text	DSet1		Text	DSet1
CodeEqtn	Text	6.10.3.2.1-2 Discretely Braced Top Flange in Compression 6.10.8.2.3-2 Top Flange Lateral Torsional Buckling		Text	6.10.3.2.1-2 Discretely Braced Top Flange in Compression 6.10.8.2.3-2 Top Flange Lateral Torsional Buckling
SlabStatus	Text	Non- Composite	•	Text	Non- Composite
fbuComp	Kip/ft2	-3617.88		kip/in2 (ksi)	-25.1241666
fbuTens	Kip/ft2	3155.45		kip/in2 (ksi)	21.9128472
· flTop	Kip/ft2	0		kip/in2 (ksi)	0
flBot	Kip/ft2	0		kip/in2 (ksi)	0
fDeck	Kip/ft2	0		kip/in2 (ksi)	0
Fcrw	Kip/ft2	7200		kip/in2 (ksi)	50
Dc	ft	2.4183		in	29.0196
RhPos	Unitless	1		Unitless	1
rt	ft	0.2703		in	3.2436 √
Lp	ft	6.5087		in	78.1044
Lr	ft	24.4398		in	293.2776
FncFLB	Kip/ft2	6566.03		kip/in2 (ksi)	45.5974305
FncLTB	Kip/ft2	5574.83		kip/in2 (ksi)	38.7140972
FrcPos	Kip/ft2	5574.83		kip/in2 (ksi)	38.7140972
FrtPos	Kip/ft2	7200		kip/in2 (ksi)	50
DCRatio	Unitless	0.648967		Unitless	0.648967
	+				-

Vs. 25.4ksi in sprd. Vs. 22.1 ksi in sped.

Vs. 3.243" in sprd. Vs. 293.2" in sprd.

45. 38.74 in sprd.

TAE	BLE: Bridge Super	Design 43 -	AASHTOLRFDO	7 - Steell	CompCstrNSt	g-FlxNg
				-		
	Request	Text	a_ Constr		Text	a_ Constr
	BridgeObj	Text	BOBJ1		Text	BOBJ1
	Station	ft	50		in	600
	Location	Text	Before		Text	Before
	Girder	Text	Interior Girder		Text	Interior Girde
	Combo	Text	a- Strength 4		Text	a- Strength 4
	Label	Text			Text	0
	Step	Text	0	/	Text	0
	DSet	Text	DSet1	/	Text	DSet1
	CodeEqtn	Text	6.10.3.2.2-1 Discretely Braced Top Flange in Tension	1	Text	6.10.3.2.2-1 Discretely Braced Top Flange in Tension
	SlabStatus	Text	Non- Composite		Text	Non- Composite
	fbuComp	Kip/ft2	0		kip/in2 (ksi)	0
	fbuTens	Kip/ft2	Ō		kip/in2 (ksi)	Ō
	flTop	Kip/ft2	0		kip/in2 (ksi)	0
	flBot	Kip/ft2	0		kip/in2 (ksi)	0
	fDeck	Kip/ft2	0		kip/in2 (ksi)	0
	Fcrw	Kip/ft2	7200		kip/in2 (ksi)	50
	Dc	ft	2.4183		in	29.0196
	RhNeg	Unitless	1		Unitless	1
	rt	ft	0.2851		in	3,4212
	Lp	ft	6.8669	*	in	82.4028
	Lr	ft	25.7847		in	309.4164
	FncFLB	Kip/ft2	7200		kip/in2 (ksi)	50
	FncLTB	Kip/ft2	5700.49		kip/in2 (ksi)	39.5867361
	FrcNeg	Kip/ft2	5700.49		kip/in2 (ksi)	39.5867361
/	FrtNeg	Kip/ft2	7200		kip/in2 (ksi)	50
	DCRatio	Unitless	0		Unitless	0

Not Used because the section is in positive flexure

TABLE: Bridge Super	Design 44 -	AASHTOLRFD07	7 - Steell	CompCstrNS	stg-Shear
Request	Text	a_ Constr		Text	a_ Constr
BridgeObj	Text	BOBJ1		Text	BOBJ1
Station	ft	50		in	600
Location	Text	Before		Text	Before
Girder	Text	Interior Girder 1		Text	Interior Girde 1
DSet	Text	DSet1		Text	DSet1
Combo	Text	a- Strength 4		Text	a- Strength 4
Label	Text	•	1	Text	0
Step	Text	0		Text	0
CodeEqtn	Text	6.10.9.2-1		Text	6.10.9.2-1
PanelType	Text	Unstiffened		Text	Unstiffened
SlabStatus	Text	Non- Composite		Text	Non- Composite
Vu	Kip	15.024		Kip	15.024
Vr	Kip	306.502		Kip	306.502
Vcr	Kip	306.502		Kip	306.502
Vp	Kip	783.949	;	Kip	783.949
C	Unitless	0.390971	7	Unitless	0.390971
k	Unitless	5		Unitless	5
d0	ft	0		in	0
d0req	ft	0		in	0
VrWithD0req	Kip	0		Kip	0
DCRatio	Unitless	0.049017		Unitless	0.049017

TABLE: Bridge Super D	esign 01 -	Design Result S	tatus			
DesReqName	Text	a_ Constr √		Text	a_ Constr	
BridgeObj	Text	BOBJ1 √		Text	BOBJ1	
Station	ft	120 √	7	in	1440	
Location	Text	Before √		Text	Before	
Status	Unitless	0		Unitless	0	
Message				Text	Design was performed and results are available, whether or not the design passed or failed.	

 Request	Text	a_ Constr		Text	a_ Constr
BridgeObj	Text	BOBJ1		Text	BOBJ1
Station	ft	120	}	in	1440
Location	Text	Before		Text	Before
Girder	Text	Interior Girder		Text	Interior Girde
BeamProp	Text	I-Girder 2.5in T		Text	I-Girder 2.5ii
ASlabTri	ft2	6.5		in2	936
ThSlab	ft	0.66667		in	8.00004
WSlabEff	ft	9.75		in	117
fcConcSlab	Kip/ft2	576		kip/in2 (ksi)	4
ESlab	Kip/ft2	519119.5		kip/in2 (ksi)	3604.996528
ABeam	ft2	0.6981		in2	100.5264
EBeam	Kip/ft2	4176000		kip/in2 (ksi)	29000
IxBeam	ft4	3.155525		ft4	3.155525
BeamRolled	Yes/No	No		Yes/No	No
ThFlgTop	ft	0.2083	7	in	2.4996
WdthFlgTop	ft	1.1667		in	14.0004
fyFlgTop	Kip/ft2	7200		kip/in2 (ksi)	50
fyrFlgTop	Kip/ft2	5040		kip/in2 (ksi)	35
LamfFlgTop	Unitless	2.800528		Unitless	2.800528
LampfFlgTop	Unitless	9.151612		Unitless	9.151612
LamrfFlgTop	Unitless	16.119553		Unitless	16.119553
CmpctFlgTop	Yes/No	Yes		Yes/No	Yes
ThFlgBot	ft	0.2292		in	2.7504
WdthFlgBot	ft	1.1667		in	14.0004
fyFlgBot	Kip/ft2	7200		kip/in2 (ksi)	50
fyrFlgBot	Kip/ft2	5040		kip/in2 (ksi)	35
LamfFlgBot	Unitless	2.545157		Unitless	2.545157
LampfFlgBot	Unitless	9.151612		Unitless	9.151612
LamrfFlgBot	Unitless	16.119553		Unitless	16.119553
CmpctFlgBot	Yes/No	Yes		Yes/No	Yes
DepthWeb	ft	4.5		in	54
ThickWeb	ft	0.0417		in	0.5004
fyWeb	Kip/ft2	7200		kip/in2 (ksi)	50
ŔbPos	Unitless	1	+	Unitless	1
RbNeg	Unitless	1		Unitless	1
Lb	ft	20		in	240

TABLE	: Bridge Super I	Design 42 -	AASHTOLRFD	07 - Steell	CompCstrNSt	g-FlxPs
				9		
	Request	Text	a_ Constr		Text	a_Constr
	BridgeObj	Text	BOBJ1		Text	BOBJ1
	Station	ft	120		in	1440
	Location	Text	Before		Text	Before
	Girder	Text	Interior Girder		Text	Interior Girder
	Combo	Text	a- Strength 4		Text	a- Strength 4
	Label	Text			Text	0
	Step	Text	0		Text	0
	DSet	Text	DSet1	1/	Text	DSet1
	CodeEqtn	Text	6.10.3.2.2-1 Discretely Braced Bottom Flange in Tension	1	Text	6.10.3.2.2-1 Discretely Braced Bottom Flange in Tension
	SlabStatus	Text	Non- Composite		Text	Non- Composite
	fbuComp	Kip/ft2	0		kip/in2 (ksi)	0
	fbuTens	Kip/ft2	0		kip/in2 (ksi)	0
	flTop	Kip/ft2	0		kip/in2 (ksi)	0
	flBot	Kip/ft2	0		kip/in2 (ksi)	0
	fDeck	Kip/ft2	0		kip/in2 (ksi)	0
	Fcrw	Kip/ft2	7200	-	kip/in2 (ksi)	50
	Dc	ft	2.1638		in	25.9656
	RhPos	Unitless	1		Unitless	1
	rt/	ft	0.3177		in	3.8124
	Lp	ft	7.6515		in	91.818
	/ Lr	ft	28.7307		in	344.7684
	FncFLB	Kip/ft2	7200		kip/in2 (ksi)	50
1	FncLTB	Kip/ft2	5934.64		kip/in2 (ksi)	41.21277778
/	FrcPos	Kip/ft2	5934.64		kip/in2 (ksi)	41.21277778
/	FrtPos	Kip/ft2	7200		kip/in2 (ksi)	50
free	DOD "	11-41			11.10	+

0

Unitless

Not used, because the section negative flexure. 16

0

DCRatio

Unitless

	Dridge Super	Design 45 -	AASHTOLRFD07	- Steel	Compositivo	g-rixivg
-	Request	Text	a Constr	-	Text	a Constr
-	BridgeObj	Text	BOBJ1		Text	BOBJ1
-	Station	ft	120	-	in	1440
	Location	Text	Before	1	Text	Before
	Girder	Text	Interior Girder	1	Text	Interior Girder
	Combo	Text	a- Strength 4		Text	a- Strength 4
	Label	Text		1	Text	0
	Step	Text	0		Text	0
	DSet	Text	DSet1		Text	DSet1
	CodeEqtn	Text	6.10.3.2.1-2 Discretely Braced Bottom Flange in Compression 6.10.8.2.3-2 Bottom Flange Lateral Torsional Buckling		Text	6.10.3.2.1-2 Discretely Braced Bottom Flange in Compression 6.10.8.2.3-2 Bottom Flange Lateral Torsional Buckling
	SlabStatus	Text	Non- Composite		Text	Non- Composite
	fbuComp	Kip/ft2	-3249.04		kip/in2 (ksi)	-22.56277778
	fbuTens	Kip/ft2	3454.83		kip/in2 (ksi)	23.991875
	flTop	Kip/ft2	0		kip/in2 (ksi)	0
	flBot	Kip/ft2	0		kip/in2 (ksi)	0
	fDeck	Kip/ft2	0		kip/in2 (ksi)	0
	Fcrw	Kip/ft2	7200		kip/in2 (ksi)	50
	Dc	ft	2.1638		in	25.9656
	RhNeg	Unitless	1		Unitless	1
	rt	ft	0.3193		in	3.8316
	Lp	ft	7.6902		in	92.2824
	Lr	ft	28.8761		in	346.5132
	FncFLB	Kip/ft2	7200		kip/in2 (ksi)	50
	FncLTB	Kip/ft2	5944.96		kip/in2 (ksi)	41.2844444
	FrcNeg	Kip/ft2	5944.96		kip/in2 (ksi)	41.2844444
	FrtNeg	Kip/ft2	7200	1	kip/in2 (ksi)	50
					Unitless	0.54652

V5.23 ksi in shod. V5 29.4ksi in shod.

vs. 50 ksi in sprd.

ABLE: Bridge Super	Design 44 -	AASHTOLRFD07	' - Steell	CompCstrNS	tg-Shear_
Request	Text	a_ Constr		Text	a_ Constr
BridgeObj	Text	BOBJ1		Text	BOBJ1
Station	ft	120		in	1440
Location	Text	Before		Text	Before
Girder	Text	Interior Girder		Text	Interior Girde
DSet	Text	DSet1	1	Text	DSet1
Combo	Text	a- Strength 4		Text	a- Strength 4
Label	Text		4	Text	0
Step	Text	0	- 2	Text	0
CodeEqtn	Text	6.10.9.2-1	4	Text	6.10.9.2-1
PanelType	Text	Unstiffened		Text	Unstiffened
SlabStatus	Text	Non- Composite		Text	Non- Composite
Vu	Kip	153.498		Kip	153.498 √
Vr	Kip	306.502	•	Kip	306.502
Vcr	Kip	306.502		Kip	306,502
Vp	Kip	783.949	-	Kip	783.949
Ċ	Unitless	0.390971		Unitless	0.390971
k	Unitless	5		Unitless	5
dO	ft	0		in	0
d0req	ft	0		in	0
VrWithD0req	Kip	0		Kip	0
DCRatio	Unitless	0.500808		Unitless	0.500808

45.154.47 in strd.

D E S I G N S P R E A D S H E E T S . C O M

I-Girder Section Analysis, AASHTO LRFD
3rd Ed. (2004), Art. 6.10; ver. 0.15-dev
((c) DesignSpreadsheets.com 2005-2008)

Project: Check CSI Bridge composite steel design	Made By: Date:	ok 5/7/2011	Job No:
Subject:	Checked By: Date:		Sheet No:

G2 @ 0.417L - pos. moment (Model A)

INPUT

OUTPUT - Sectional Properties

(section transformed into steel)

Girder				Girder Only	Composite (3n)	Composite (n)	Composite (rebar)
b_{bf}	14	in	Girder A [in ²]	48.00	48.00	48.00	48.00
b_{tf}	14	in	Girder y _{cg} [in]	25.852	25.852	25.852	25.852
t _{bf}	0.875	in	Girder I _z [in ⁴]	22114.8	22114.8	22114.8	22114.8
t _{tf}	0.625	in	Haunch A [in ²]	-	1.70	5.09	-
h_w	54	in	Haunch y _{cg} [in]	-	56.9375	56.9375	-
t _w	0.5	in	Haunch l₂ [in⁴]	-	1.2	3.5	-
			Deck A [in ²]	-	39.49	118.48	-
Deck			Deck y _{cg} [in]	-	62.375	62.375	-
b_d	117	in	Deck I _z [in ⁴]	-	210.6	631.9	-
t _d	8	in	Rebar A	-	-	-	0.0002
A_{s1}	0.0001	in ²	Rebar y _{cg}	-	-	-	62.375
A_{s2}	0.0001	in ²	Rebar I _z	-	-	-	0.0
d_1	2	in	Total A	48.00	89.19	171.58	48.00
d_2	2	in	Total y _{cg}	25.852	42.616	51.996	25.852
			Total Iz	22114.8	51584.2	68447.3	22115.1
Hauch			y_topdeck(d) [in]	-	23.759	14.379	-
b_h	14	in	y_topbar(c) [in]	-	21.759	12.379	38.523
t _h	3	in	y_topgrd(b) [in]	29.648	12.884	3.504	29.648
			y_botgrd(a) [in]	25.852	42.616	51.996	25.852
Modular	ratio		S_topdeck(d) [in ³]	-	2171.1	4760.1	-
n	7.9	[-]	S_topbar(c) [in ³]	-	2370.7	5529.2	574.1
			S_topgrd(b) [in ³]	745.9	4003.7	19532.7	745.9
			S_botgrd(a) [in ³]	855.5	1210.4	1316.4	855.5
			S_topdeck(d) [ft ³]	-	1.256440	2.754716	-
			S_topbar(c) [ft ³]	-	1.371926	3.199770	0.332217
			S_topgrd(b) [ft ³]	0.431656	2.316949	11.303644	0.431663
			S_botgrd(a) [ft ³]	0.495054	0.700490	0.761807	0.495057

Neutral Axis Check

OK - neutral axis is within girder

Comment

In progress...

Section Properties about Weak Axis

$I_y =$	343.6 in ⁴
S _{y[TOP FLANGE]} =	49.1 <i>in</i> ³
S _{VIBOT FLANGE1} =	49.1 <i>in</i> ³

1/1

D E S I G N S P R E A D S H E E T S . C O M

I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008)

Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By: Date:	Sheet No:

Note: Stress sign convention for this sheet - compressive stresses are reported as negative, tensile stresses as positive (sign convention for moments - see sketch below).

G2 @ 0.417L - pos. moment (Model A)

INPUT - Moments

DC1	1050.8	kip-ft
DC2	182.4	kip-ft
DW	250	kip-ft
LL+I	1963.1	kip-ft
LL+I fat range	0	kip-ft
LL+I permit	0	kip-ft
SE	0	kip-ft

OUTPUT - Stresses

Positive Moment Region (stress at the top of deck is reported as stress in concrete: $f_c = f_s/n$ or $f_c = f_s/(3n)$)

- 11	3 (
		Load Acting on	Grd Only	C	Composite (3n)			Composite (n)						
		Load Type	DC1	DC2	DW	SE	LL+I	LL+I fat	LL+l p	Service II	Strength I	Strength II	Fatigue	Governing
- II	SS	@ topdeck(d)	0	0.0	-0.1	0.0	-0.6	0.0	0.0	-0.9	-1.2	-0.1	0.0	-1.2
- II	ES E	@ topbar(c)	0	-0.9	-1.3	0.0	-4.3	0.0	0.0	-7.7	-10.5	-3.1	0.0	-10.5
- II	[본호	@ topgrd(b)	-16.9	-0.5	-0.7	0.0	-1.2	0.0	0.0	-19.8	-25.0	-22.9	0.0	-25.0
- II	Ś	@ botgrd(a)	14.7	1.8	2.5	0.0	17.9	0.0	0.0	42.3	55.7	24.4	0.0	55.7

Moment [kip-ft] \rightarrow 4035.2 5351.9 1916.5 0.0

File: plate-girder-section detailed design v1.5-dev

Tab: Stresses

Ш

G2 @ 0.417L - pos. moment (Model A)

!	((c) = co.gop.co.co.co.co.	
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By:	Sheet No:
	Date:	

Value

Units

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO Comment Page

—— || indicates that corresponding checks are applicable for section under consideration (based on user's input)

BASIC INPUTS

Variable/Formula

G2 @ 0.417L - pos. moment (Model A)

 		POS COMPOSITE	 general positive moment region (POS), negative moment region (NEG) composite section (COMPOSITE), noncomposite section (NONCOMPOSITE) 	
 	$\begin{aligned} t_w &= \\ b_{fc} &= \\ t_{fc} &= \\ D &= \end{aligned}$	0.500 in 14.000 in 0.625 in 54.000 in	 geometry web thickness full width of compression flange thickness of compression flange web depth 	
 	E = F _{yt} = F _{yw} = F _{y,reinf} =	29,000 ksi 50.0 ksi 50.0 ksi 60.0 ksi	 material properties steel Young's modulus specified minimum yield strenth of flange specified mininum yield stress of web specified minimum yield strength of reinforcement 	
II II	$F_{yc} =$ $F_{yt} =$	50.0 ksi 50.0 ksi	specified minimum yield strength of compression flange specified minimum yield strength of tension flange	
	$F_{yr} =$ note: $F_{yr} = min (0.7F_{yc}, F_{yw}), Fyr \ge 0.5F_{yc}$	35.0 ksi	compression flange stress at the onset of nominal yielding • effect of applied loads	6-108
 	$\Phi_f = \Phi_v = \Phi_v$	1.00 <i>[-]</i> 1.00 <i>[-]</i>	• load factors [AASHTO 6.5.4.2] resistance factor for flexure resistance factor for shear	6-27
	$\lambda_{\rm f} = b_{\rm fc} / (2t_{\rm fc}) =$ $\lambda_{\rm pf} = 0.38 {\rm sqrt} ({\rm E/F_{\rm yc}}) =$ $\lambda_{\rm rf} = 0.56 {\rm sqrt} ({\rm E/F_{\rm yc}}) =$	11.200 [-] 9.152 [-] 13.968 [-]	slenderness ratios for local buckling resistance [AASHTO 6.10.8.2.2] slenderness ratio for compression flange limiting slenderness ratio for a compact flange limiting slenderness ratio for a noncompact flange	6-107
 	R _h =	1.000 [-]	 reduction factors hybrid factor to account for reduced contribution of web to nominal flexural resistance at first yield in flange element; use 1.0 for girders with same steel strength for flange and web 	6-80
	R _b =	1.000 [-]	 web load-shedding factor; accounts for increase in compression flange stress due to web local buckling 	6-81
	$\begin{aligned} R_b &= 1 - [a_{wc}/(1200 + 300 a_{wc})] \ [2D_c/t_w - \lambda_{rw}] = \\ \lambda_{rw} &= 5.7 \ \text{sqrt}(E/F_{yc}) = \\ a_{wc} &= 2D_c t_w/b_{fc} t_{fc} = \end{aligned}$	1.000 <i>[-]</i> 137.3 <i>[-]</i> 3.317 <i>[-]</i>	limiting slenderness ratio for noncompact web	
II II			Nominal Shear Resistance of Unstiffened Webs [AASHTO 6.10.9.2]	6-115

I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev

((c) DesignSpreadsheets.com 2005-2008)

Units

Comment

G2 @ 0.417L - pos. m	noment
(Me	odel A)

!	((c) = co.gop.co.co.co.co.	
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By:	Sheet No:
	Date:	

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO Page

Ţ	— indicates that corresponding checks are applicable for section u	ınder consideration (based	f on user's input)
II	$V_n = V_{cr} = CV_p =$	306 kip	V_n = nominal shear resistance, V_{cr} = shear-buckling resistance
Ш	$V_p = 0.58F_{yw}Dt_w =$	783 kip	plastic shear force
Ш	C =	0.390 [-]	ratio of the shear buckling resistance to the shear yield strength
Ш	if $D/t_w \le 1.12$ sqrt (Ek/F_{yw}) then $C =$	1.000 [-]	, ,
Ш	if 1.12 sqrt (Ek/ F_{yw}) < D/ $t_w \le$ 1.40 sqrt (Ek/ F_{yw}) then C =		
\parallel	= 1.12 / (D/t_w) sqrt (Ek/F_{yw}) =	0.558 [-]	
\parallel	if $D/t_w > 1.40$ sqrt (Ek/F_{yw}) then $C =$		
-	$= 1.57 / (D/t_w)^2 (Ek/F_{yw}) =$	0.390 [-]	
Ш	note: D/t _w =	108.0 <i>[-]</i>	
\parallel	note: 1.12 sqrt (Ek/F _{yw}) =	60.3 [-]	
Ш	note: 1.40 sqrt (Ek/ F_{yw}) =	75.4 [-]	
Ш	k =	5.0 [-]	shear buckling coefficient (k=5 for unstiffened webs)

Value

CONSTRUCTIBILITY

Variable/Formula

6-86

				Basic Inputs	
- II	$f_{\text{bu[C]}} =$	25.4	ksi	stress in compression flange due to DC1 (no lateral	
				bending), factored by 1.5 (Strength IV load combination)	
Ш	$f_{bu[T]} =$	22.1	ksi	stress in tension flange due to DC2 (no lateral	
	54.1			bending), factored by 1.5 (Strength IV load	
				combination)	
II	$f_{I[C]} =$		ksi	stress in compression flange due to lateral bending	
				(wind, from exterior girder bracket during construction, etc.)	
П	f _{IIT1} =		ksi	stress in tension flange due to lateral bending	
	$V_{u} =$	96	kips	factored shear in web, factored by 1.5 (Strength IV	
			•	load combination)	
-					
		29.023		depth of web in compression in the elastic range	6-69
	$r_t = b_{fc} / sqrt\{ 12 [1+(D_c t_w)/(3b_{fc}t_{fc})] \} =$	3.243	in	effective radius of gyration for lateral torsional buckling	6-109
Ш	$C_b =$	1.000	[-]	moment gradient modifier (conservatively, use C_b =	6-108
				1.0)	
II II				unbraced lengths for lateral torsional buckling	6-108
Ш				resistance [AASHTO 6.10.8.2.3]	0-100
Ш	L _b =	240.0	in	unbraced length	
Ш	$L_p = 1.0 r_t sqrt(E/F_{yc}) =$	78.1	in	limiting unbraced length 1 (for compact)	
Ш	$L_r = \pi r_t \text{ sqrt } (E/F_{yr}) =$	293.3	in	limiting unbraced length 2 (for noncompact)	
Ш					
- II				Compression Flange Flexural Resistance	6-106
ш	F _{nc} = min (F _{nc(1)} , F _{nc(2)}) =	38.7	koi	[AASHTO 6.10.8.2] o nominal flexural resistance of flange taken as	
Ш	rnc = 11111 (rnc[1], rnc[2]) =	30.7	NOI	smaller local buckling resistance and lateral torsional	
				buckling resistance [AASHTO 6.10.8.2.1]	
Ш	$F_{nc[1]} =$	43.6	ksi	o local buckling resistance of the compression	
П	if $\lambda_f \le \lambda_{pf}$ then $F_{ncf11} = R_b R_h F_{vc} =$	50.0	ksi	flange [AASHTO 6.10.8.2.2]	
ii	$\inf_{\lambda_f} \lambda_{\text{of then } \Gamma_{\text{nc[1]}}} = \inf_{\lambda_f} \lambda_{\text{of then } \Gamma_{\text{nc[1]}}} =$	30.0			
ii	$= \{1-[1-F_{vr}/(R_hF_{vc})][(\lambda_f-\lambda_{of})/(\lambda_{rf}-\lambda_{of})]\} R_hR_hF_{vc} =$	43.6	ksi		
	, , , , , , , , , , , , , , , , , , ,	38.7		o lateral torsional buckling resistance of	
- 11	· nc[z] —	30.7	1101	compression flange [AASHTO 6.10.8.2.3]	
				. 5.	

D E S I G N S P R E A D S H E E T S . C O M I-Girder Section Analy 3rd Ed. (2004), Art.

Variable/Formula

I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008)

Units

Comment

G2 @ 0.417L - pos. moment (Model A)

[AASHTO 6.10.4]

6-93

	((c) Dooignoproduction	2000 2000)
Project: Check CSI Bridge composite steel design	Made By: <i>ok</i> Date: <i>5/7/2011</i>	Job No:
Subject:	Checked By: Date:	Sheet No:

Value

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO Page

if $L_b \le L_p$ then $F_{nc[2]} = R_b R_h F_{yc} =$	50.0 <i>ksi</i>		
if $L_p < L_b \le L_r$ then $F_{nc[2]} =$			
= $C_b \{1-[1-F_{yr}/(R_hF_{yc})][(L_b-L_p)/(L_r-L_p)]\} R_bR_hF_{yc} =$	38.7 ksi	note: $F_{nc[2]} \le R_b R_h F_{yc}$	
if $L_b > L_r$ then $F_{nc 2 } = F_{cr} =$	52.3 <i>ksi</i>	note: $F_{nci2} \le R_b R_b F_{vc}$	
$F_{cr} = C_b R_b \pi^2 E / (L_b / r_t)^2 =$	52.3 <i>ksi</i>		
$F_{crw} = min (F_{crw[1]}, F_{crw[2]}, F_{crw[3]}) =$	50.0 ksi	 nominal bend buckling resistance for webs without longitudinal stiffeners [AASHTO 6.10.1.9.1] 	6-
$F_{crw[1]} = 0.9Ek / (D/t_w)^2 =$	69.7 <i>ksi</i>		
$k = 9 / (D_c/D)^2 =$	31.2 [-]	bend buckling coefficient	
$F_{crw[2]} = R_h F_{yc} =$	50.0 <i>ksi</i>		
$F_{crw[3]} = F_{yw}/0.7 =$	71.4 <i>ksi</i>		
		Flexure - Discretely Braced Flanges in Compression [AASHTO 6.10.3.2.1]	6
$f_{\text{bu}} + f_{\text{I}} \le \Phi_{\text{f}} R_{\text{h}} F_{\text{yc}}$	ок		
$f_{bu} + f_{l} =$	25.4 ksi		
$\Phi_f R_h F_{yc} =$	50.0 <i>ksi</i>		
$f_{\text{bu}} + (1/3)f_{\text{I}} \le \Phi_{\text{f}}F_{\text{nc}}$	ок		
$f_{bu} + (1/3)f_{l} =$	25.4 <i>ksi</i>		
$\Phi_f F_{nc} =$	38.7 <i>ksi</i>		
: _{bu} ≤ Φ _f F _{crw}	ок		
$f_{bu} =$	25.4 <i>ksi</i>		
$\Phi_{\rm f}F_{\sf crw}=$	50.0 <i>ksi</i>		
		• Flexure - Discretely Braced Flanges in Tension [AASHTO 6.10.3.2.2]	6
$f_{bu} + f_I \le \Phi_f R_h F_{yt}$	ok		
$f_{bu} + f_{l} =$	22.1 <i>ksi</i>		
$\Phi_f R_h F_{yt} =$	50.0 <i>ksi</i>		
		Shear	6
$V_{u} \leq \Phi_{v} V_{cr}$	ОК	- Onoui	
V _u =	96 kips	factored shear in the web	
V _{cr} =	306 <i>kips</i>	shear buckling resistance	

II		19.8 ksi	Basic Inputs stress in top flange for Service II load combination	
Ш	$f_{f[BOT]} =$	42.3 ksi	stress in bottom flange for Service II load	
II		ksi	combination	
			Flexural Checks	6-93
ii		ок	o top steel flange of composite sections	
- 11	$f_f =$	19.8 <i>ksi</i>		
- 11	$0.95R_hF_{yf} =$	47.5 ksi		
Ш				
- 11	·	OK	 bottom steel flange of composite sections 	
- II	$f_f + f/2 =$	42.3 ksi		

SERVICE LIMIT STATE

I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008) G2 @ 0.417L - pos. moment (Model A)

	((-) 3 -	
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By:	Sheet No:
	Date:	

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

Variable/Formula Value Units Comment AASHTO Page

 $0.95R_{h}F_{vf} =$

- || indicates that corresponding checks are applicable for section under consideration (based on user's input) 47.5 ksi

• Stress in Concrete Deck [AASHTO 6.10.3.2.4]

6-89

6-95

FATIGUE AND FRACTURE LIMIT STATES

[AASHTO 6.10.5]

	fatigue detail description =	tension flange			
ii.	fatigue detail category = $\gamma(\Delta f) \le (\Delta F)_n$	C OK			6-29
Ï	$\gamma(\Delta f) =$	0.0	ksi	live load stress range due to passage of fatigue load multiplied by load factor $y = 0.75$	
	$(\Delta F)_{n=} (A/N)^{n} = (A/N)^{n}$	5.0	ksi	nominal fatigue resistance [AASHTO 6.6.1.2.5]	6-40
	A =	44.00	10 ⁸ ksi ³	constant from [AASHTO Tab. 6.6.1.2.5-1]	6-42
	$N = (365)(75)n(ADTT)_{SL} =$	232,687,500			
II	n =	1		number of stress range cycles per truck passage taken from [AASHTO Tab. 6.6.1.2.5-2]	
II	$(ADTT)_{SL} = (p)(ADTT) =$	8,500		single lane ADTT (number of trucks per day in one direction averaged over the design life) [AASHTO 3.6.1.4]	3-24
II	p =	0.85		reduction factor for number of trucks for multiple lanes taken from [AASHTO Tab. 3.6.1.4.2-1]	
II	ADTT = (ftt) (ADT) =	10,000		number of trucks per day in one direction averaged over the design life	
Ш	ftt =	0.25		fraction of trucks in traffic	
	$ADT = (nI) (ADT)_{SL} =$	40,000		average daily traffic per whole bridge	
II	(ADT) _{SL} =	20,000		average daily traffic per single lane (20,000 is considered maximum)	
	nl =	2		number of lanes	
	note: $(\Delta F)n \ge (1/2)(\Delta F)_{TH} =$	5.0	ksi		
II	$(\Delta F)_{TH} =$	10.00	10 ⁸ ksi ³	constant amplitude fatigue threshold taken from [AASHTO Tab. 6.6.1.2.5-3]	

STRENGTH LIMIT STATE

6-96

				Basic Inputs	
	$f_{bu[C]} =$	25.0	ksi	stress in compression flange (no lateral bending)	
Ш	$f_{bu[T]} =$	55.7	ksi	stress in tension flange (no lateral bending)	
Ш	$f_{I[C]} =$,	ksi	stress in compression flange due to lateral bending	
Ш	$f_{I(T)} =$		ksi	stress in tension flange due to lateral bending	
	$M_u =$	5,352	kip-ft	bending moment about major axis	
	note: M _u =	64,223	kip-in		
	$V_u =$	389	kips	factored shear in web	
Ш	$D_c =$	16.588	in	depth of web in compression in the elastic range	6-69
II	D _{cp} =	0.000	in	depth of web in compression at the plastic moment	6-68
II	$r_t = b_{fc} / sqrt\{ 12 [1+(D_c t_w)/(3b_{fc} t_{fc})] \} =$	3.523	in	effective radius of gyration for lateral torsional buckling	6-109
Ш	C _b =	1.000 [[-]	moment gradient modifier (conservatively, use $C_b = 1.0$)	6-108

G2 @ 0.417L - pos. moment (Model A)

L. C.	((-) =gp	
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By: Date:	Sheet No:

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO Page

	Variable/Formula	Value Units	Comment	AASHTO Page
_	— indicates that corresponding checks are applicable for section	under consideration (based	on user's input)	
7			unbraced lengths for lateral torsional buckling	6-108
			resistance [AASHTO 6.10.8.2.3]	
	L _b =	300.0 in	unbraced length	
	$L_p = 1.0 r_t sqrt (E/F_{yc}) =$	84.8 in	limiting unbraced length 1 (for compact)	
	$L_r = \pi r_t \operatorname{sqrt} (E/F_{vr}) =$	318.6 in	limiting unbraced length 2 (for noncompact)	
	·			
			 Compression Flange Flexural Resistance 	6-106
			[AASHTO 6.10.8.2]	
	$F_{nc} = min (F_{nc[1]}, F_{nc[2]}) =$	36.2 ksi	nominal flexural resistance of flange taken as maller level budding resistance and leteral targinal.	
			smaller local buckling resistance and lateral torsional buckling resistance [AASHTO 6.10.8.2.1]	
			actioning resistance parties are actioned and	
	$F_{nc[1]} =$	43.6 <i>ksi</i>	 local buckling resistance of the compression 	
			flange [AASHTO 6.10.8.2.2], same as for	
	E _	36.2 <i>ksi</i>	constructibility - see calculations above	
	F _{nc[2]} =	30.2 KSI	 lateral torsional buckling resistance of compression flange [AASHTO 6.10.8.2.3] 	
	if $L_b \le L_p$ then $F_{nc[2]} = R_b R_h F_{vc} =$	50.0 <i>ksi</i>	,	
	if $L_p < L_b \le L_r$ then $F_{nc[2]} =$			
	= $C_b \{1-[1-F_{yr}/(R_hF_{yc})] [(L_b-L_p)/(L_r-L_p)]\} R_bR_hF_{yc} =$	36.2 ksi		
	if $L_b > L_r$ then $F_{nc/2/2} = F_{cr} = C_b R_b \pi^2 E / (L_b/r_t)^2 =$	39.5 ksi		
	note: $F_{nc[2]} \le R_b R_b F_{yc}$			
	note: I note: I note: The virth ye			
	$F_{crw} = min(F_{crw[1]}, F_{crw[2]}, F_{crw[3]}) =$	50.0 <i>ksi</i>	o nominal bend buckling resistance for webs without	6-67
	orm Cormety compay		longitudinal stiffeners [AASHTO 6.10.1.9.1]	
		242.4.4.4		
	$F_{crw[1]} = 0.9Ek / (D/t_w)^2 =$	213.4 ksi		
	$k = 9 / (D_c/D)^2 =$	95.4 [-]	bend buckling coefficient	
	$F_{crw[2]} = R_{h}F_{yc} =$	50.0 <i>ksi</i>		
	$F_{crw[3]} = F_{yw}/0.7 =$	71.4 <i>ksi</i>		
	Composite Section in Positive Flexure			
			 Compact Section Criteria 	6-98
		COMPACT	Compact/Noncompact (To qualify as compact,	
	Is F _{vf} ≤ 70ksi satisfied?	YES	section must meet all the criteria listed below).	
	Is $D/t_w \le 150$ satisfied?	YES		
	"			
	$D/t_w = $	108.0 [-]		
	Is $2D_{cp}/t_w \le 3.76 \text{ sqrt}(E/F_{yc})$ satisfied?	YES		
	$2D_{cp}/t_w =$	0.0 [-]		
	$3.76 \operatorname{sqrt}(E/F_{yc}) =$	90.6 [-]		
			Flexural Resistance for Compact Section	6-101
			[AASHTO 6.10.7.1]	0 .0.
	$\mathbf{M}_{u} + 1/3f_{l}S_{xt} \leq \Phi_{f}M_{n}$	OK	- -	
	$M_u + 1/3f_1S_{xt} =$	64,223 kip-in		
	$\Phi_f M_n =$	73,702 kip-in		
	note: M _n =	6,142 kip-ft		
	$S_{xt} = M_{yt}/F_{yt} =$	1133.9 <i>in</i> ³	elastic section modulus about the major axis of the	
	M	E0 004 1/4 '	section to the tension flange	6.050
	M _{yt} =	56,694 kip-in	yield moment with respect to tension flange	6-252
	$M_n =$	73,702 kip-in	nominal flexural resistance of the section	
	note: M _n =	6,142 <i>kip-ft</i>		
	if $D_p \le 0.1 D_t$ then $M_n = M_p =$	90,016 kip-in		
	if $D_p \le 0.1$ D_t then $M_n = M_p =$ if $D_p > 0.1$ D_t then $M_n = M_p$ (1.07-0.7 D_p/D_t) =	90,016 <i>kip-in</i> 90,590 <i>kip-in</i> 66.375 <i>in</i>	total depth of composite section [imported from Mp	

tab]

I-Girder Section Analysis, AASHTO LRFD

3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008)

Units

Comment

G2 @ 0.417L - pos. moment (Model A)

	((-)3 -	,
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By: Date:	Sheet No:

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

Variable/Formula

AASHTO Page

6-114

\Box	— indicates that corresponding checks are applicable	for section under consideration (based	on user's input)	
	$D_p =$	6.033 in	distance from top of concrete deck to the neutral axis of composite section at plastic moment [imported from Mp tab]	
Ш	$M_p =$	90,016 <i>kip-in</i>	plastic moment of composite section [imported from Mp tab]	
	note: M _p =	7,501 <i>kip-ft</i>		
	note: $M_n \le 1.3R_hM_y =$	73,702 kip-in		
Ш	$M_y =$	56,694 kip-in	yield moment [import from My tab]	6-102
	note: M _y =	4,724 kip-ft		
Ш			Ductility Requirement (For Both Compact and Noncompact Sections)	6-105
	$D_p \le 0.42 \ D_t$	ок		
	$D_p =$	6.033 <i>in</i>		
Ш	$0.42 D_t =$	27.878 in		

Value

Ш	Shear Resistance [AASHTO 6.10.9]	
- 11	$V_u \le \Phi_v V_n$	NG
	$V_u =$	389
Ш	$\Phi_{\rm v}V_{\rm n}=$	306

DESTIGNSPREADSHEETS. COM I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008) Project: Check CSI Bridge composite steel design Made By: ok Date: 5/7/2011 Subject: Checked By: Sheet No: Date:

Note: sign convention for this sheet - all moments are reported as absolute values; negative "P" forces are compressive, positive "P" forces are tensile.

- || indicates that corresponding checks are applicable for section under consideration (based on user's input)

DETERMINATION OF PLASTIC MOMENT Mp [AASHTO D6.1, p. 6-250]

G2 @ 0.417L - pos. moment (Model A)

	Input Taken from Othe	er Tabs	
- II			
- II	b _{bf} =	14 <i>in</i>	o girder dimensions
Ш	b _{tf} =	14 <i>in</i>	
- II	t _{bf} =	0.875 in	
Ш	$t_{tf} =$	0.625 in	
Ш	h _w =	54 in	
Ш	t _w =	0.5 <i>in</i>	
Ш	b _d =	117 <i>in</i>	o deck dimensions
- II	t _d =	8 <i>in</i>	
Ш	t _h =	2.875 in	o haunch dimensions
Ш			
II.			
II.	Additional Input		
II II	F _{yf} =	50.0 <i>ksi</i>	specified minimum yield stress of flange
ii	F _{vw} =	50.0 <i>ksi</i>	specified minimum yield stress of web
	′		
II.	F _{y,reinf} =	60.0 ksi	specified minimum yield stress of reinforcement
II	f _c ' =	4.0 <i>ksi</i>	minimum specified 28-day compressive strength of concrete
- II	$\beta_1 =$	1.000 [-]	use β_1 = 1 to consider whole concrete block in compression

Ш	Outputs - Positive Mo	ment Regio	n					
II II		top coord	bot coord	Height	Force	Arm to PNA	Moment @ PNA	
- ii		[in]	[in]	[in]	[kips]	[in]	[kip-in]	
- 11	Ps compression	0.000	6.033	6.033	-2400.0	-3.017	7239.8	concrete
- 11	Pc compression	10.875	10.875	0.000	0.0	4.842	0.0	top flange
- II	Pc tension	10.875	11.500	0.625	437.5	5.154	2255.0	
- II	Pw compression	11.500	11.500	0.000	0.0	5.467	0.0	web
- 11	Pw tension	11.500	65.500	54.000	1350.0	32.467	43830.2	
- II	Pt tension	65.500	66.375	0.875	612.5	59.904	36691.4	bottom flange
- 11	Total				0.0		90016.4	
- 11								
- II	$y = D_p =$	6.033	in	distance of I	PNA from the	ne top of se	ection	
- II	M _p =	90,016	kip-in	plastic mom	ent			
- II	note: M _p =	7,501	kip-ft	plastic mom	ent			
	D _{cp} =	0.000	in	depth of wel	b in compre	ession at pla	astic moment	t
	$D_t =$	66.375	in	total depth of	of composite	e section		

DESIGNSPREADSHEETS. COM I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008) Project: Check CSI Bridge composite steel design Made By: ok Date: 5/7/2011 Subject: Checked By: Sheet No:

Date:

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

- || indicates that corresponding checks are applicable for section under consideration (based on user's input)

DETERMINATION OF YIELD MOMENT My (for strength check)

[AASHTO D6.2, p. 6-252]

G2 @ 0.417L - pos. moment (Model A)

- II	Input		
II II	M _{D1} =	15,762	kip-in
II	$M_{D2} =$	7,236	kip-in
- II	note: M _{D1} =	1313.5	kip-ft
Ш	note: M _{D2} =	603.0	kip-ft
II	$f_c =$	25.0	ksi
II	$f_t =$	55.7	ksi
Ш	F _{yf} =	50.0	ksi
II	F _{y,reinf} =	60.0	ksi

 general factored moment applied to noncomposite section (1.25 DC1) factored moment applied to longterm composite

sum of compression flange stresses [import from Stresses tab, for Service II load group] sum of tension flange stresses [import from Stresses tab, for Service I| load group] specified minimum yield strength of flange specified minimum yield strength of

section (1.25 DC2 + 1.5 DW)

Ш	y,reint —	00.0 No	reinforcement
	Composite Section in Residue Florence		
	Composite Section in Positive Flexure		
ii	$\mathbf{M}_{\mathbf{Y}} = \min \left(\mathbf{M}_{\mathbf{Y}[\mathbf{T}]}, \mathbf{M}_{\mathbf{Y}[\mathbf{C}]} \right) =$	56,694 kip-in	
\parallel	note: M _Y =	4,724 kip-ft	
II			
II			 determine moment to cause yielding in tension (bottom) flange
П	$M_{Y T } = M_{D1} + M_{D2} + M_{AD T } =$	56,694 kip-in	tension (bottom) hange
Ï	$M_{AD[T]} = (F_{yt} - M_{D1}/S_{NC[T]} - M_{D2}/S_{LT[T]}) S_{ST[T]} =$	33,696 <i>kip-in</i>	additional moment applied to short term composite section to cause nominal yielding in
			tension flange
Ш	$S_{NC[T]} =$	855.5 in ³	noncomposite section modulus
Ш	S _{LT[T]} =	1,210.4 in ³	short-term composite section modulus
\parallel	S _{ST[T]} =	1,316.4 <i>in</i> ³	long-term composite section modulus
Ш			
Ш			 determine moment to cause yielding in compression (top) flange
Ш	$M_{Y[C]} = M_{D1} + M_{D2} + M_{AD[C]} =$	551,576 kip-in	
Ш	$M_{AD[C]} = (F_{yf} - M_{D1}/S_{NC[C]} - M_{D2}/S_{LT[C]}) S_{ST[C]} =$	528,578 kip-in	
Ш	S _{NC[C]} =	745.9 in ³	
Ш	$S_{LT[C]} =$	4,003.7 in ³	
\parallel	S _{ST[C]} =	19,532.7 in ³	
	$D_c = f_c / \left(\ f_c + f_t \right) \ d - t_{fc} =$	16.588 <i>in</i>	depth of web in compression in the elastic range
П	d =	55.500 in	depth of steel section
Ï	$t_{f_C} =$	0.625 in	thickness of top flange

DETERMINATION OF YIELD MOMENT My (for constructibility check)

[AASHTO D6.2, p. 6-252]

sum of compression flange stresses [import from Stresses tab, for DC1]

DESIGN SPREADSHEETS.COM	I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008)		
Project: Check CSI Bridge composite steel design	Made By: ok Jo Date: 5/7/2011	ob No:	
Subject:	Checked By: Sh Date:	neet No:	

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

Ţ	— indicates that corresponding checks are applicable for section	under consideration (b	ased on user's input)
II	$f_t =$	14.7 ksi	sum of tension flange stresses [import from Stresses tab, for DC1]
Ш	$F_{yf} =$	50.0 ksi	specified minimum yield strength of flange
Ш	Noncomposite Section in Positive Flexure		
	$M_{Y} = \min(S_{NC[T]}F_{yf}, S_{NC[C]}F_{yf}) =$	37,295 kip-in	
ii	note: $M_Y =$	3,108 <i>kip-ft</i>	
Ш	$S_{NC[T]} =$	855.5 in ³	section modulus for tension flange
Ш	$S_{NC[C]} =$	745.9 in ³	section modulus for compression flange
III			
ii	$D_c = f_c / (f_c + f_t) d - t_{fc} =$	29.023 in	depth of web in compression in the elastic range
П	d =	55.500 in	depth of steel section
ij	$t_{f_C} =$	0.625 in	thickness of top flange

D E S I G N S P R E A D S H E E T S . C O M

I-Girder Section Analysis, AASHTO LRFD
3rd Ed. (2004), Art. 6.10; ver. 0.15-dev
((c) DesignSpreadsheets.com 2005-2008)

Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By: Date:	Sheet No:

G2 @ 1.0L - neg. moment (Model A)

INPUT

OUTPUT - Sectional Properties

(section transformed into steel)

Girder				Girder Only	Composite (3n)	Composite (n)	Composite (rebar)
b_{bf}	14	in	Girder A [in ²]	100.50	100.50	100.50	100.50
b_{tf}	14	in	Girder y _{cg} [in]	28.718	28.718	28.718	28.718
t _{bf}	2.75	in	Girder I _z [in⁴]	65426.6	65426.6	65426.6	65426.6
t _{tf}	2.5	in	Haunch A [in ²]	-	0.58	1.74	-
h_w	54	in	Haunch y _{cg} [in]	-	59.75	59.75	-
t _w	0.5	in	Haunch l₂ [in⁴]	-	0.0	0.1	-
			Deck A [in ²]	-	38.77	116.32	-
Deck			Deck y _{cg} [in]	-	64.25	64.25	-
b_d	117	in	Deck I _z [in ⁴]	-	206.8	620.4	-
t _d		in	Rebar A	-	-	-	0.0002
A _{s1}	0.0001	in ²	Rebar y _{cg}	-	-	-	64.250
A_{s2}	0.0001	in²	Rebar I _z	-	-	-	0.0
d₁	2	in	Total A	100.50	139.85	218.56	100.50
d_2	2	in	Total y _{cg}	28.718	38.698	47.875	28.718
			Total Iz	65426.6	101214.3	134363.1	65426.9
Hauch			y_topdeck(d) [in]	-	29.552	20.375	-
b _h	14	in	y_topbar(c) [in]	-	27.552	18.375	37.532
t _h	1	in	y_topgrd(b) [in]	30.532	20.552	11.375	30.532
			y_botgrd(a) [in]	28.718	38.698	47.875	28.718
Modular	ratio		S_topdeck(d) [in ³]	-	3424.9	6594.7	-
n	8.047	[-]	S_topbar(c) [in ³]	-	3673.5	7312.5	1743.2
			S_topgrd(b) [in ³]	2142.9	4924.7	11812.6	2142.9
			S_botgrd(a) [in ³]	2278.2	2615.5	2806.5	2278.2
			S_topdeck(d) [ft ³]	-	1.982013	3.816349	-
			S_topbar(c) [ft ³]	-	2.125886	4.231743	1.008823

3.2 2.9

1/1

1.240116

1.624141 1.318417

1201.1 in⁴

DECK

WEB

HAUNCH

TOP FLANGE

BOTTOM FLANGE

S_{y[TOP FLANGE]} = 171.6 in³ 171.6 in³ S_{y[BOT FLANGE]} =

Neutral Axis Check

S_topgrd(b) [ft³]

S_botgrd(a) [ft3]

OK - neutral axis is within girder

1.240108

1.318415

2.849950

1.513607

6.835992

Comment

D E S I G N S P R E A D S H E E T S . C O M

I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008)

Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By: Date:	Sheet No:

Note: Stress sign convention for this sheet - compressive stresses are reported as negative, tensile stresses as positive (sign convention for moments - see sketch below).

G2 @ 1.0L - neg. moment (Model A)

IN	Ю	IT	_ [N/I	nm	n	+0

OUTPUT - Stresses

Negative Moment Region (stress at the top of deck is reported as stress in concrete using short-term composite section: $f_c = f_s/n$)

Ш		Load Acting on	Grd Only			Composi	te (rebar)							
- II		Load Type	DC1	DC2	DW	SE	LL+I	LL+I fat	LL+l p	Service II	Strength I	Strength II	Fatigue	Governing
- 11	Ŋ	@ topdeck(d)	0	0.1	0.1	0.0	0.5	0.0	0.0	0.9	1.2	0.3	0.0	1.2
l II	ES [is	@ topbar(c)	0	2.9	4.0	0.0	16.1	0.0	0.0	27.9	37.9	9.6	0.0	37.9
Ш		@ topgrd(b)	16.3	2.4	3.3	0.0	13.1	0.0	0.0	39.0	51.2	28.2	0.0	51.2
Ш		@ botgrd(a)	-15.3	-2.2	-3.1	0.0	-12.4	0.0	0.0	-36.7	-48.1	-26.5	0.0	-48.1

Moment [kip-ft] → -6962.4 -9141.3 -5037.0 0.0

File: plate-girder-section detailed design v1.5-dev

Tab: Stresses

Ш

DESIGN SPREADSHEETS . COM	I-Girder Section Analysis, AASHTO LRFD
	3rd Ed. (2004), Art. 6.10; ver. 0.15-dev
	((c) DesignSpreadsheets com 2005-2008

		((0) Doc	ngrioproducinocio.com	1 2000 2000)
Project: (Check CSI Bridge composite steel design	Made By: Date:	ok 5/7/2011	Job No:
Subject:		Checked By	:	Sheet No:
		Date:		

G2 @ 1.0L - neg. moment (Model A)

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO Variable/Formula Value Units Comment Page

- || indicates that corresponding checks are applicable for section under consideration (based on user's input)

BASIC INPUTS

G2 @ 1.0L - neg. moment (Model A)

			- manazal	
II		NEG	 general positive moment region (POS), negative moment region (NEG) 	
II		COMPOSITE	composite section (COMPOSITE), noncomposite section (NONCOMPOSITE)	
II II		0.500 /	• geometry	
II		0.500 in	web thickness	
II		14.000 in	full width of compression flange	
II	10	2.750 in	thickness of compression flange	
II II	D =	54.000 in	web depth	
ii			material properties	
ii	E =	29,000 ksi	steel Young's modulus	
Ш	$F_{yf} =$	50.0 ksi	specified minimum yield strenth of flange	
Ш	F _{yw} =	50.0 ksi	specified mininum yield stress of web	
Ш	$F_{y,reinf} =$	60.0 ksi	specified minimum yield strength of reinforcement	
П	F _{yc} =	50.0 <i>ksi</i>	specified minimum yield strength of compression flange	
П	$F_{yt} =$	50.0 <i>ksi</i>	specified minimum yield strength of tension flange	
П	F _{yr} =	35.0 ksi	compression flange stress at the onset of nominal yielding	6-108
П	note: $F_{yr} = min (0.7F_{yc}, F_{yw}), Fyr \ge 0.5F_{yc}$		yleiding	
II				
ii II			effect of applied loads	
Ш			load factors [AASHTO 6.5.4.2]	6-27
II		1.00 [-]	resistance factor for flexure	
II.		1.00 [-]	resistance factor for shear	
II II			slenderness ratios for local buckling resistance	6-107
			[AASHTO 6.10.8.2.2]	
Ш	$\lambda_f = b_{fc} / (2t_{fc}) =$	2.545 [-]	slenderness ratio for compression flange	
Ш	$\lambda_{pf} = 0.38 \text{ sqrt } (E/F_{yc}) =$	9.152 <i>[-]</i>	limiting slenderness ratio for a compact flange	
Ш	$\lambda_{\rm rf} = 0.56 \text{ sqrt (E/F}_{\rm yc}) =$	13.968 [-]	limiting slenderness ratio for a noncompact flange	
П				
Ш			 reduction factors 	
Ш	R _h =	1.000 [-]	hybrid factor to account for reduced contribution of	6-80
			web to nominal flexural resistance at first yield in flange element; use 1.0 for girders with same steel	
			strength for flange and web	
II	R _b =	1.000 [-]	 web load-shedding factor; accounts for increase in compression flange stress due to web local buckling 	6-81
			compression hange stress due to web local buckling	
Ш	$R_b = 1 - [a_{wc}/(1200+300a_{wc})] [2D_c/t_w - \lambda_{rw}] =$	1.000 [-]		
Ш	$\lambda_{rw} = 5.7 \text{ sqrt}(E/F_{yc}) =$	137.3 [-]	limiting slenderness ratio for noncompact web	
H	$a_{wc} = 2D_c t_w/b_{fc} t_{fc} =$	0.675 [-]		
- II				
II			Nominal Shear Resistance of Unstiffened Webs ASHTO 6 10 0 21	6-115
			[AASHTO 6.10.9.2]	

I-Girder Section Analysis, AASHTO LRFD

3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008)

	((0) = 00.9= 1.0	
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By: Date:	Sheet No:

G2 @ 1.0L - neg. moment (Model A)

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO Variable/Formula Value Units Comment Page

5.0 [-]

┎	indicates that corresponding checks are applicable for section under consideration (based on user's input)					
II	$V_n = V_{cr} = CV_p =$	306 kip	V_n = nominal shear resistance, V_{cr} = shear-buckling resistance			
	$V_p = 0.58F_{yw}Dt_w =$	783 kip	plastic shear force			
Ш	C =	0.390 [-]	ratio of the shear buckling resistance to the shear yield strength			
	if $D/t_w \le 1.12 \text{ sqrt } (Ek/F_{yw}) \text{ then } C =$	1.000 [-]	-			
	if 1.12 sqrt (Ek/ F_{yw}) < D/ $t_w \le$ 1.40 sqrt (Ek/ F_{yw}) then C =					
	= 1.12 / (D/ t_w) sqrt (Ek/ F_{yw}) =	0.558 [-]				
Ш	if $D/t_w > 1.40$ sqrt (Ek/F _{yw}) then C =					
	$= 1.57 / (D/t_w)^2 (Ek/F_{vw}) =$	0.390 [-]				
	note: D/t _w =	108.0 [-]				
	note: 1.12 sqrt (Ek/F _{yw}) =	60.3 [-]				
II	note: 1.40 sqrt (Ek/F_{yw}) =	75.4 [-]				

CONSTRUCTIBILITY

k =

 \parallel

6-86

shear buckling coefficient (k=5 for unstiffened webs)

П	f	23.0 ksi	 Basic Inputs stress in compression flange due to DC1 (no lateral 	
11	$f_{bu[C]} =$	23.0 No	bending), factored by 1.5 (Strength IV load combination)	
Ш	$f_{bu[T]} =$	24.4 ksi	stress in tension flange due to DC2 (no lateral	
			bending), factored by 1.5 (Strength IV load	
П	$f_{i C } =$	ksi	combination) stress in compression flange due to lateral bending	
"	(o)		(wind, from exterior girder bracket during	
	,	, .	construction, etc.)	
II		ksi	stress in tension flange due to lateral bending	
	V _u =	96 kips	factored shear in web, factored by 1.5 (Strength IV load combination)	
	D _c =	25.968 in	depth of web in compression in the elastic range	6-69
Ш	$r_{t} = b_{fc} / sqrt\{ 12 [1+(D_{c}t_{w})/(3b_{fc}t_{fc})] \} =$	3.832 in	effective radius of gyration for lateral torsional buckling	6-109
Ш	C _b =	1.000 [-]	moment gradient modifier (conservatively, use $C_b =$	6-108
			1.0)	
ij				
Ш			 unbraced lengths for lateral torsional buckling resistance [AASHTO 6.10.8.2.3] 	6-108
Ш	L _b =	240.0 in	unbraced length	
-	$L_p = 1.0 r_t sqrt(E/F_{yc}) =$	92.3 in	limiting unbraced length 1 (for compact)	
Ш	$L_r = \pi r_t \text{ sqrt } (E/F_{yr}) =$	346.5 in	limiting unbraced length 2 (for noncompact)	
II			 Compression Flange Flexural Resistance [AASHTO 6.10.8.2] 	6-106
П	$F_{nc} = min (F_{nc[1]}, F_{nc[2]}) =$	41.3 ksi	o nominal flexural resistance of flange taken as	
	ne (negr) negzy		smaller local buckling resistance and lateral torsional	
			buckling resistance [AASHTO 6.10.8.2.1]	
П	F _{no[1]} =	50.0 <i>ksi</i>	 local buckling resistance of the compression 	
"	• กลุา	0010 1101	flange [AASHTO 6.10.8.2.2]	
Ш	if $\lambda_f \le \lambda_{pf}$ then $F_{nc[1]} = R_b R_h F_{yc} =$	50.0 <i>ksi</i>		
Ш	if $\lambda_f > \lambda_{pf}$ then $F_{nc[1]} =$			
Ш	= $\{1-[1-F_{yr}/(R_hF_{yc})][(\lambda_f-\lambda_{pf})/(\lambda_{rf}-\lambda_{pf})]\}$ $R_bR_hF_{yc}$ =	70.6 ksi		
Ш	$F_{nc[2]} =$	41.3 ksi	o lateral torsional buckling resistance of	
			compression flange [AASHTO 6.10.8.2.3]	

I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008) G2 @ 1.0L - neg. moment (Model A)

L. C.	((-) =gp	
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By: Date:	Sheet No:

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO Page

	Variable/Formula	Value Units	Comment	AASHTO Page
_	— indicates that corresponding checks are applicable for section	under consideration (based	on user's input)	
V	if $L_b \le L_p$ then $F_{nc[2]} = R_b R_h F_{yc} =$	50.0 <i>ksi</i>		
"	if $L_b < L_b \le L_r$ then $F_{nc(2)} =$	00.0		
11	$= C_b \{1-[1-F_{yr}/(R_hF_{yc})][(L_b-L_p)/(L_r-L_p)]\} R_bR_hF_{yc} =$	41.3 ksi	note: $F_{nc[2]} \le R_b R_h F_{vc}$	
II II			* * * * * * * * * * * * * * * * * * * *	
	if $L_b > L_r$ then $F_{nc[2]} = F_{cr} =$	73.0 ksi	note: $F_{nc[2]} \le R_b R_h F_{yc}$	
II II	$F_{cr} = C_b R_b \pi^2 E / (L_b / r_t)^2 =$	73.0 <i>ksi</i>		
ii	$F_{crw} = min (F_{crw[1]}, F_{crw[2]}, F_{crw[3]}) =$	50.0 <i>ksi</i>	o nominal bend buckling resistance for webs without longitudinal stiffeners [AASHTO 6.10.1.9.1]	6-67
П	$F_{crw[1]} = 0.9Ek / (D/t_w)^2 =$	87.1 <i>ksi</i>		
ii	$k = 9 / (D_c/D)^2 =$	38.9 [-]	bend buckling coefficient	
			bend buckling coemicient	
II	$F_{crw[2]} = R_{h}F_{yc} =$	50.0 <i>ksi</i>		
	$F_{crw[3]} = F_{yw}/0.7 =$	71.4 <i>ksi</i>		
			Flexure - Discretely Braced Flanges in	6-87
			Compression [AASHTO 6.10.3.2.1]	
II	$f_{bu} + f_l \le \Phi_f R_h F_{yc}$	OK		
II	$f_{bu} + f_{l} =$	23.0 <i>ksi</i>		
II	$\Phi_f R_h F_{yc} =$	50.0 <i>ksi</i>		
III	$f_bu + (1/3)f_l \le \Phi_f F_nc$	ок		
II	$f_{bu} + (1/3)f_1 =$	23.0 ksi		
	$\Phi_f F_{nc} =$	41.3 <i>ksi</i>		
	$f_{bu} \le \Phi_f F_{crw}$	ок		
ii	f _{bu} =	23.0 ksi		
II	$\Phi_f \Gamma_{crw} =$	50.0 <i>ksi</i>		
ii	· 1- GW			
ii			Flexure - Discretely Braced Flanges in Tension	6-89
		01/	[AASHTO 6.10.3.2.2]	
II	$f_{bu} + f_1 \le \Phi_f R_h F_{yt}$	OK		
Ш	$f_{bu} + f_{l} =$	24.4 ksi		
Ш	$\Phi_{\rm f} R_{\rm h} F_{\rm yt} =$	50.0 <i>ksi</i>		
ii i	$V_{\mu} \le \Phi_{\nu} V_{cr}$	ок	Shear	6-90
II II	$V_{ij} = V_{ij} V_{ij} V_{ij}$	96 kips	factored shear in the web	
II II	-	•		
Ш	V _{cr} =	306 <i>kips</i>	shear buckling resistance	
Ш			• Stress in Concrete Deck [AASHTO 6.10.3.2.4]	6-89
Ш	Shall 1% longitudinal reinforcement be provided?	YES	If the actual tensile stress in concrete deck exceeds	6-75
			Φf_r , to control cracking, the area of longitudinal	
			reinforcement shall be at least 1% of the concrete	
			deck area. [AASHTO 6.10.1.7]	
	$\sigma_{c} = (1/n) (M/S) =$	1.0 <i>ksi</i>	actual tensile stress in concrete deck	
	M =	52,371 kip-in	moment due to construction loads, DC1, factored by	6-75
			1.5 (Strength IV load combination - high DL to LL	
			ratio) [imported from Stresses tab]	
,,		100:11.0	[AASHTO 6.10.1.7]	
ii i	note: M =	4,364 kip-ft	position modulus for ton of deals with a resident A. C. C.	
II	S =	6594.7 in ³	section modulus for top of deck using n = 1 (section	
			transformed in steel) [imported from Stresses tab]	
	$\Phi f_r =$	0.0 <i>ksi</i>	factored concrete tensile resistance	
ii.	Φ =	[-]	resistance factor for concrete in tension	5-53
ii	$f_r = 0.24 \text{ sqrt } (f_c') =$	0.00 ksi	modulus of rupture for concrete deck	5-33 5-16
-11	1 - 1 - 1 - 1 - 1		[AASHTO 5.4.2.6]	
Ш	$f_c' =$	ksi	specified compressive strength of concrete	

I-Girder Section Analysis, AASHTO LRFD D E S I G N S P R E A D S H E E T S . C O M

3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008) G2 @ 1.0L - neg. moment (Model A)

AASHTO

Page

6-93

6-94

6-77

6-95

Made By: Project: Check CSI Bridge composite steel design Job No: 5/7/2011 Date: Subject: Checked By: Sheet No: Date:

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

Variable/Formula Value Units Comment

OΚ

#DIV/0!

|| indicates that corresponding checks are applicable for section under consideration (based on user's input)

SERVICE LIMIT STATE

[AASHTO 6.10.4]

39.0 ksi $f_{f[TOP]} =$ || f_{f[BOT]} = 36.7 ksi Ш ksi

Ï $f_f \le 0.95R_hF_{vf}$ OK Ш 39.0 ksi Ш $0.95R_{h}F_{vf} =$ 47.5 ksi

 $f_f + f_f/2 \le 0.95R_hF_{vf}$ ок 36.7 ksi \parallel $f_f + f_1/2 =$ 47.5 ksi \parallel $0.95R_{h}F_{vf} =$

39 0 ksi Ш $f_c = f_{I[TOP]} =$ 50.0 ksi Ш $F_{crw} =$

|| Shall 1% longitudinal reinforcement be provided?

|| f_c ≤ F_{crw}

 $|| \sigma_c = (1/n) (M/S) =$ #DIV/0! ksi M = 83,549 kip-in S= in 3 Ш Φf_r = 0.0 ksi

 Basic Inputs stress in top flange for Service II load combination

stress in bottom flange for Service II load combination

 Flexural Checks 6-93 o top steel flange of composite sections

o bottom steel flange of composite sections

calculation of F_{crw}] [AASHTO 6.10.1.9.1]

o this check applies to all sections except for composite sections in positive flexure with web proportions such that D/t_w ≤ 150 [AASHTO Eq. 6.10.4.2.2-4] compression flange stress due to Service II loads nominal bend buckling resistance for webs [see "Strength Limit State" section below for the

• Stress in Concrete Deck [AASHTO 6.10.3.2.4] 6-89 If the actual tensile stress in concrete deck exceeds 6-75 Φf., to control cracking, the area of longitudinal reinforcement shall be at least 1% of the concrete deck area. [AASHTO 6.10.1.7] actual tensile stress in concrete deck moment due to Service II load combination 6-75 [imported from Stresses tab] [AASHTO 6.10.1.7]

section modulus for top of deck using n = 1; section transformed in steel (same as for constructibility check above) factored concrete tensile resistance (same as for constructibility check above)

FATIGUE AND FRACTURE LIMIT STATES

[AASHTO 6.10.5]

|| fatigue detail description = tension flange fatigue detail category = $\gamma(\Delta f) \leq (\Delta F)_n$ οк 6-29 0.0 ksi $\gamma(\Delta f) =$ live load stress range due to passage of fatigue load \parallel multiplied by load factor $\gamma = 0.75$ \parallel $(\Delta F)_{n=} (A/N)^{(1/3)} =$ 5.0 ksi nominal fatigue resistance [AASHTO 6.6.1.2.5] 6-40 44.00 10⁸ ksi³ constant from [AASHTO Tab. 6.6.1.2.5-1] 6-42 Ш $N = (365)(75)n(ADTT)_{SL} =$ 232,687,500 \parallel Ш number of stress range cycles per truck passage taken from [AASHTO Tab. 6.6.1.2.5-2]

I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev

((c) DesignSpreadsheets.com 2005-2008)

Units

Comment

G2 @ 1.0L -	neg. moment
	(Model A)

!	((-)3			
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:		
Subject:	Checked By:	Sheet No:		
	Date:			

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO Page

Ţ	— indicates that corresponding checks are applicable for section u	ınder consideration (based o	on user's input)	
II	$(ADTT)_{SL} = (p)(ADTT) =$	8,500	single lane ADTT (number of trucks per day in one direction averaged over the design life) [AASHTO 3.6.1.4]	3-24
II	p =	0.85	reduction factor for number of trucks for multiple lanes taken from [AASHTO Tab. 3.6.1.4.2-1]	
II	ADTT = (ftt) (ADT) =	10,000	number of trucks per day in one direction averaged over the design life	
- 11	ftt =	0.25	fraction of trucks in traffic	
Ш	$ADT = (nI) (ADT)_{SL} =$	40,000	average daily traffic per whole bridge	
Ш	(ADT) _{SL} =	20,000	average daily traffic per single lane (20,000 is considered maximum)	
Ш	nl =	2	number of lanes	
	note: $(\Delta F)n \ge (1/2)(\Delta F)_{TH} =$	5.0 <i>ksi</i>		
Ш	$(\Delta F)_{TH} =$	10.00 10 ⁸ ksi ³	constant amplitude fatigue threshold taken from [AASHTO Tab. 6.6.1.2.5-3]	

Value

STRENGTH LIMIT STATE

Variable/Formula

6-96

			Basic Inputs	
Ш	$f_{bu[C]} =$	48.1 ksi	stress in compression flange (no lateral bending)	
Ш	$f_{bu[T]} =$	51.2 ksi	stress in tension flange (no lateral bending)	
	$f_{I[C]} =$	ksi	stress in compression flange due to lateral bending	
п	f _{I(T)} =	ksi	stress in tension flange due to lateral bending	
	'([T] = M _{II} =	9,141 kip-i	5	
II	-		,	
II	note: M _u =	109,696 kip-i		
	$V_u =$	389 kips	factored shear in web	
	D _c =	25.968 in	depth of web in compression in the elastic range	6-69
	D _{cp} =	23.500 in	depth of web in compression at the plastic moment	6-68
"	- cp			
II	$r_t = b_{fc} / sqrt\{ 12 [1+(D_ct_w)/(3b_{fc}t_{fc})] \} =$	3.832 <i>in</i>	effective radius of gyration for lateral torsional buckling	6-109
Ш	$C_b =$	1.000 [-]	moment gradient modifier (conservatively, use C_{b} =	6-108
			1.0)	
ii.				
Ш			 unbraced lengths for lateral torsional buckling resistance [AASHTO 6.10.8.2.3] 	6-108
П	L _b =	300.0 in	unbraced length	
ii	$L_p = 1.0 r_t \text{ sqrt } (E/F_{vc}) =$	92.3 in	limiting unbraced length 1 (for compact)	
II	$L_r = \pi r_t \operatorname{sqrt} (E/F_{vr}) =$	346.5 in	limiting unbraced length 2 (for noncompact)	
	· · · · · /			
ii			 Compression Flange Flexural Resistance 	6-106
			[AASHTO 6.10.8.2]	
Ш	$F_{nc} = min (F_{nc[1]}, F_{nc[2]}) =$	37.7 ksi	•	
			smaller local buckling resistance and lateral torsional buckling resistance [AASHTO 6.10.8.2.1]	
			buokking rodokanoo p v torri o o. 10.0.2.11	
Ш	F _{nc[1]} =	50.0 <i>ksi</i>	 local buckling resistance of the compression 	
			flange [AASHTO 6.10.8.2.2], same as for	
п	E _	37.7 ksi	constructibility - see calculations above o lateral torsional buckling resistance of	
Ш	F _{nc[2]} =	31.1 KSI	compression flange [AASHTO 6.10.8.2.3]	
Ш	if $L_b \le L_p$ then $F_{nc[2]} = R_b R_h F_{vc} =$	50.0 <i>ksi</i>		
ii	if $L_p < L_b \le L_r$ then $F_{no[2]} =$			
II	$= C_b \{1-[1-F_{yr}/(R_hF_{yc})] [(L_b-L_p)/(L_r-L_p)]\} R_bR_hF_{yc} =$	37.7 ksi		
ï	if $L_b > L_r$ then $F_{nc 2 } = F_{cr} = C_b R_b \pi^2 E / (L_b/r_t)^2 =$	46.7 ksi		
ï	note: $F_{nc[2]} \le R_b R_h F_{yc}$			

note: M_y =

I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008) G2 @ 1.0L - neg. moment (Model A)

	((s) = co.gsp.co.co.co.co.co.	
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:
Subject:	Checked By:	Sheet No:
	Date:	

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

AASHTO

				AASITIO
Variable/Formula	Value	Units	Comment	Page

	F _{crw} = min (F _{crw[1]} , F _{crw[2]} , F _{crw[3]}) =	50.0 ksi	nominal bend buckling resistance for webs without longitudinal stiffeners [AASHTO 6.10.1.9.1]	6-67
	$F_{crw[1]} = 0.9Ek / (D/t_w)^2 =$ $k = 9 / (D_c/D)^2 =$ $F_{crw[2]} = R_h F_{yc} =$ $F_{crw[3]} = F_{yw}/0.7 =$	87.1 <i>ksi</i> 38.9 [-] 50.0 <i>ksi</i> 71.4 <i>ksi</i>	bend buckling coefficient	

10,748 kip-ft

	Composite Sections in Negative Flexure and Noncomposite Sections		
			Compact Section Criteria
 		COMPACT	Compact/Noncompact (To qualify as compact, section must meet all the criteria listed below).
Is	s F _{yf} ≤ 70ksi satisfied?	YES	,
:	s $2D_c/t_w \le 5.7 \text{ sqrt}(E/F_{yc})$ satisfied?	YES	
II	$2D_c/t_w =$	103.9 [-]	
II	$5.7 \text{ sqrt}(E/F_{yc}) =$	137.3 [-]	
II			 Flexural Resistance - Discretely Braced Flanges in Compression [AASHTO 6.10.8.1.1]
f	_{bu} + (1/3)f _I ≤ Φ _f F _{nc}	NG	
II	$f_{bu} + (1/3)f_{l} =$	48.1 <i>ksi</i>	
II	$\Phi_{t}F_{nc}$ =	37.7 ksi	
II			Flexural Resistance - Continously Braced Flanges
f _i	$b_{\text{bu}} \leq \Phi_f R_h F_{\text{vf}}$	ок	in T or C
' 	bu = \(\frac{1}{2}\) fin =	48.1 ksi	
ii	$\Phi_t R_h F_{vt} =$	50.0 ksi	

48.1 ksi
50.0 ksi
NG
389 <i>kip</i>
306 kip

DESTIGNSPREADSHEETS. COM I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008) Project: Check CSI Bridge composite steel design Made By: ok Date: 5/7/2011 Subject: Checked By: Sheet No:

Date:

Note: sign convention for this sheet - all moments are reported as absolute values; negative "P" forces are compressive, positive "P" forces are tensile.

- || indicates that corresponding checks are applicable for section under consideration (based on user's input)

DETERMINATION OF PLASTIC MOMENT Mp [AASHTO D6.1, p. 6-250]

G2 @ 1.0L - neg. moment (Model A)

Ш	Input Taken from Othe	er Tahs	
ij.			
ij.	b _{bf} =	14 in	o girder dimensions
Ш	b _{tf} =	14 in	
$\ \cdot \ $	t _{bf} =	2.75 in	
	$t_{tf} =$	2.5 in	
Ш	h _w =	54 in	
$\ $	t _w =	0.5 in	
	b _d =	117 in	o deck dimensions
	$t_d =$	8 in	
	t _h =	1 <i>in</i>	o haunch dimensions
\parallel			
ii	Additional Input		
	E _	E0.0 /mi	an acified minimum vield atreas of flance
	$F_{yf} =$	50.0 <i>ksi</i>	specified minimum yield stress of flange
II	$F_{yw} =$	50.0 <i>ksi</i>	specified minimum yield stress of web
	$F_{y,reinf} =$	60.0 <i>ksi</i>	specified minimum yield stress of reinforcement
	f _c ' =	4.0 ksi	minimum specified 28-day compressive strength of concret
	$\beta_1 =$	1.000 [-]	use $\beta_1 = 1$ to consider whole concrete block in compression

Ш	Outputs - Negative Me	oment Regio	on					
ij.		hat acard	ton soord	l la imbé	Готоо	Δ	Mamant	
Ш		bot coord	top coord	Height	Force	Arm	Moment	
						to PNA	@ PNA	
		[in]	[in]	[in]	[kips]	[in]	[kip-in]	
ii	Pr	62.250	62.250	-	0.0	36.000	0.4	reinforcement
Ш	Pt tension	56.750	59.250	2.500	1750.0	31.750	55562.1	top flange
ii	Pt compression	56.750	56.750	0.000	0.0	30.500	0.0	
Ш	Pw tension	26.250	56.750	30.500	762.5	15.250	11627.9	web
ii	Pw compression	2.750	26.250	23.500	-587.5	-11.750	6903.3	
	Pc compression	0.000	2.750	2.750	-1925.0	-24.875	47884.8	bottom flange
Ш	Total				0.0		121978.6	
Ш								
Ш	$y = D_p =$	26.250	in	distance of I	PNA from the	ne bottom o	f section	
\parallel	$M_p =$	121,979	kip-in	plastic mom	ent			
\parallel	note: M _p =	10,165	kip-ft	plastic mom	ent			
\parallel	D _{cp} =	23.500	in	depth of wel	b in compre	ession at pla	astic moment	
Ш	D _t =	62.250	in	total depth of	of composite	e section		

DESIGNSPREADSHEETS. COM I-Girder Section Analysis, AASHTO LRFD 3rd Ed. (2004), Art. 6.10; ver. 0.15-dev ((c) DesignSpreadsheets.com 2005-2008) Project: Check CSI Bridge composite steel design Made By: ok Date: 5/7/2011 Subject: Checked By: Sheet No:

Date:

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

- || indicates that corresponding checks are applicable for section under consideration (based on user's input)

DETERMINATION OF YIELD MOMENT My (for strength check)

[AASHTO D6.2, p. 6-252]

G2 @ 1.0L - neg. moment (Model A)

Composite Section in Negative Flexure

	Input		
	M _{D1} =	43,643	kip-in
Ш	$M_{D2} =$	16,802	kip-in
	note: M _{D1} =	3636.9	kip-ft
Ш	note: M _{D2} =	1400.1	kip-ft
Ш	$f_c =$	48.1	ksi
II	$f_{t} =$	51.2	ksi
Ш	$F_{yf} =$	50.0	ksi
Ш	$F_{y,reinf} =$	60.0	ksi

• general factored moment applied to noncomposite section (1.25 DC1)

factored moment applied to longterm composite section (1.25 DC2 + 1.5 DW)

sum of compression flange stresses [import from Stresses tab, for Service II load group] sum of tension flange stresses [import from Stresses tab, for Service I| load group] specified minimum yield strength of flange specified minimum yield strength of reinforcement

ij			
II.	$M_{Y} = \min \left(M_{Y[T1]}, M_{Y[C]}, M_{Y[C]}\right) =$	77,754 kip-in	
II.		6,479 <i>kip-ft</i>	
II II			determine moment to cause yielding in tension (top) flange
- II	$M_{Y[T1]} = M_{D1} + M_{D2} + M_{AD[T1]} =$	107,146 ^{kip-in}	· · · ·
Ш	$M_{AD[T1]} = (F_{yf} - M_{D1}/S_{NC[T1]} - M_{D2}/COMP[T1]) S_{COMP[T1]} =$	46,702 kip-in	additional moment applied to short term composite section to cause nominal yielding in tension flange
Ш	$S_{NC[T1]} =$	2,142.9 in ³	noncomposite section modulus
П	$S_{COMP[T1]} = S_{LT[T1]} = S_{ST[T1]} =$	2,142.9 <i>in</i> ³	composite section modulus (concrete deck not effective)
II II			determine moment to cause yielding in
"			reinforcement
Ш	$M_{Y[T2]} = M_{D2} + M_{AD[T2]} =$	77,754 kip-in	
Ш	$M_{AD[T2]} = (F_{y,reinf} - M_{D1}/S_{NC[T2]}) S_{COMP[T2]} =$	60,952 <i>kip-in</i>	
II.		1,743.2 in ³	
II II			determine moment to cause yielding in
	M. M. M. M.	Liter to	compression (bottom) flange
II.	V-1	113,911 <i>kip-in</i>	
Ш	$M_{AD[C]} = (F_{yf} - M_{D1}/S_{NC[C]} - M_{D2}/S_{COMP[C]}) S_{COM[C]} =$	53,467 kip-in	
- II	$S_{NC[C]} =$	2,278.2 in ³	
	$S_{COMP[C]} = S_{LT[C]} = S_{ST[C]} =$	2,278.2 in ³	
II II	$D_c = f_c / (f_c + f_t) d - t_{fc} =$	25.968 in	depth of web in compression in the elastic range

DETERMINATION OF YIELD MOMENT My (for constructibility check)

[AASHTO D6.2, p. 6-252]

depth of steel section

thickness of bottom flange

d =

59.250 in

2.750 in

DESIGN SPREADSHEETS.COM	I-Girder Section Analysis, AASHTO LF 3rd Ed. (2004), Art. 6.10; ver. 0.15-d ((c) DesignSpreadsheets.com 2005-2		
Project: Check CSI Bridge composite steel design	Made By: ok Date: 5/7/2011	Job No:	
Subject:	Checked By: Date:	Sheet No:	

Note: sign convention for this sheet - all moments and stresses are entered and reported as absolute values.

| | indicates that corresponding checks are applicable for section under consideration (based on user's input)

Input		
f _c =	15.3 ksi	sum of compression flange stresses [in
		from Stresses tab, for DC1]
$ f_t =$	16.3 ksi	sum of tension flange stresses [import
		Stresses tab, for DC1]
$ F_{yf} =$	50.0 <i>ksi</i>	specified minimum yield strength of flar

	Noncomposite Section in Negative Flexure		
Ш			
Ш	$M_{Y} = \min(S_{NC[T]}F_{yf}, S_{NC[C]}F_{yf}) =$	107,145 <i>kip-in</i>	
\parallel	note: M _Y =	8,929 <i>kip-ft</i>	
\parallel	$S_{NC[T]} =$	2,142.9 <i>in</i> ³	section modulus for tension flange
	S _{NC[C]} =	2,278.2 in ³	section modulus for compression flange
Ш			
	$D_c = f_c / (f_c + f_t) d - t_{fc} =$	25.968 in	depth of web in compression in the elastic range
п	al.	50.250 in	denth of steel costion
II	d =	59.250 in 2.750 in	depth of steel section thickness of bottom flange
Ш	t _{bc} =	2.750 111	unickness of bottom hange

Model C

- Model C uses staged construction to simulate the erection of the bridge.
- The design request is based on the staged construction load case.
- This model is currently a part of model A and may be isolated as a separate model in the future.

Load Cases

The following are the most important load cases were setup for model C:

- Service (staged): staged construction load case to reflect the construction sequence and apply unfactored loads
- Strength 1 (staged): staged construction load case to reflect the construction sequence and apply factored loads
- Service (staged, with pours): similar to the "Service (staged)" load case, but the deck is added in 3 pours
- Strength 1 (staged, with pours): similar to the "Strength 1 (staged)" load case, but the deck is added in 3 pours
- LL 1 lane (after staged): moving load case with factored live loads applied to a model with stiffness at the end of "Strength 1 (staged)" load case.

Stresses Due to Staged Construction – G2 at 1.000L (120')

		Spreadsheet Calcula	ations			•	CSI Bridge Output for "Strength 1 (staged)" load case	
		Unfactored Facto Stresses	or Fac	tored esses	Cumulative Factored Stresses	Factored Stresses	Cumulative Factored Stresses	
Stresses at the	DC1	-15.3	1.25	-19.1	-19.1	-18	.9 -18.9	
Bottom of Girder [ksi]	DC2	-2.2	1.25	-2.8	3 -21.9		-21.4	
	DW	-3.1	1.5	-4.7	-26.5		-25.5	
	LL+I	-12.4	1.75	-21.7	-48.2	-10	.3	
	Comments:							

⁽¹⁾ CSI Bridge LL+I factored stress is based on the distribution from the analysis for 1 lane loaded, while the spreadsheet value is based on user-calculated distribution factors.

Strength Limit State - No Pour Sequence

Parameter	Units	Model A	Model B	Model C
Design Request Mdnc Combo Mdc Combo		a_ Strength 1 a- Mdnc (Strength) a- Mdnc (Strength)	b_ Strength 1 b- Mdnc (Strength) b- Mdnc (Strength)	c_ Strength 1 a- Mdnc (Strength) a- Mdnc (Strength)
Mu Combo		a- Strength 1	b- Strength 1	c- Strength 1
G2 Positive Flexure at 50ft Mu D/C ratio	[kip-ft] [-]	0.868	0.906	0.867
G2 Negative Flexure at 120ft Mu D/C ratio	[kip-ft] [-]	1.138	1.094	1.142
G2 Shear at 120ft Vu D/C ratio	[kips] [-]	1.301	1.291	1.301

Comments:

(1) The above results are for build V15.1.0 S

Strength Limit State - With Pour Sequence

Units	Model A	Model B	Model C
		Not Aplicable	
	a_ Strength 1 (pours)		c_ Strength 1 (pours)
			a- Mdnc (Strength)
	a- Mdnc (Strength)		a- Mdnc (Strength)
	a- Strength 1 (pours)		c- Strength 1 (pours)
[kip-ft]			
[-]	0.863		0.862
[kip-ft]			
[-]	1.148		1.150
[kips]			
[-]	1.303		1.303
	[kip-ft] [-] [kip-ft] [-]	a_Strength 1 (pours) a- Mdnc (Strength) a- Mdnc (Strength) a- Strength 1 (pours) [kip-ft] [-] 0.863 [kip-ft] [-] 1.148	Not Aplicable

Comments:

(1) The above results are for CsiBridge V15.1.0_S.

Fatigue Limit State

Parameter	Units	Model A	Model B	Model C
Status/Comment			Not Checked	Not Checked
Design Request		a_ Fatigue		
Fatigue Combo		a- Fatigue		
G2 Shear at 120ft				
Vu	[kips]	32.58		
Vcr	[kips]	368.56		
D/C ratio	[-]	0.088		

Notes:

(1) The above results are for CSiBridge V15.0.1_W

Service Limit State - No Pour Sequence

Parameter	Units	Model A	Model B	Model C
Status/Comments				
Design Request Mdnc Combo Mdc Combo Ms Combo		a_ Service a- Mdnc (Service 2) a- Mdc (Service 2) a- Service 2	b_Service b- Mdnc (Service 2) b- Mdc (Service 2) b- Service 2	c_ Service a- Mdnc (Service 2) a- Mdc (Service 2) c- Service 2
G2 Positive Flexure at 50ft				
D/C ratio	[-]	0.887	0.921	0.924
G2 Negative Flexure at 120ft				
D/C ratio	[-]	0.682	0.652	0.697
G2 Shear at 120ft				
D/C ratio	[-]	not calculated	not calculated	not calculated

Notes:

(1) The above results are for CsiBridge V15.1.0_S.

Service Limit State - With Pour Sequence

Parameter	Units	Model A	Model B	Model C
Status/Comments			Not Applicable	
Design Request Mdnc Combo		a_ Service (pours) a- Mdnc (Service 2)		c_ Service (pours) a- Mdnc (Service 2)
Mdc Combo		a- Mdc (Service 2)		a- Mdc (Service 2)
DSet1 (Ms Combo)		a- Service 2 (pours)		c- Service 2 (pours)
G2 Positive Flexure at 50ft				
D/C ratio	[-]	0.880		0.918
G2 Negative Flexure at 120ft				
D/C ratio	[-]	0.690		0.702
G2 Shear at 120ft				
D/C ratio	[-]	not calculated		not calculated

Notes:

(1) The above results are for CSiBridge V15.1.0_S.

Constructability Limit State - No Pour Sequence

Parameter	Units	Model A	Model B	Model C
Status/Comments				
Design Request Demand Set 1 Demand Set 2 Demand Set 3 Demand Set 4		a_ Constr a- Strength IV		c_ Constr c. Strength 4 DL, stage DC1a c. Strength 4 DL, stage DC1b c. Strength 4 DL, stage DC1c c. Strength 4 DL, stage DC1d
G2 Positive Flexure at 50ft				
D/C ratio	[-]	0.649		0.652
G2 Negative Flexure at 120ft				
D/C ratio	[-]	0.547		0.551
G2 Shear at 120ft Vu D/C ratio	[kips] [-]	0.501		0.504

Notes:

(1) The above results are for CsiBridge V15.1.0_S, except for shear ratio for Model A that was obtained from V15.1.0_Y.

Constructability Limit State - With Pour Sequence

Parameter	Units	Model A	Model B	Model C
Status/Comments			Not Applicable	
Design Request Demand Set 1 Demand Set 2 Demand Set 3 Demand Set 4 Demand Set 5 Demand Set 6 Demand Set 7 Demand Set 8 Demand Set 9		a_ Constr (pour) a- Strength 4 (pour)		c_ Constr (pour) c. Strength 4 DL, stage DC1a c. Strength 4 DL, stage DC1b c. Strength 4 DL, stage DC1c c. Strength 4 DL, stage DC1d pour 1 c. Strength 4 DL, stage DC1d harden 1 c. Strength 4 DL, stage DC1d pour 2 c. Strength 4 DL, stage DC1d harden 2 c. Strength 4 DL, stage DC1d pour 3 c. Strength 4 DL, stage DC1d harden 3
G2 Positive Flexure at 50ft D/C ratio	[-]	0.633		0.807
G2 Negative Flexure at 120ft D/C ratio	[-]	0.558		0.564
G2 Shear at 120ft Vu D/C ratio	[kips] [-]	0.503		0.509

Notes:

(1) The above results were obtained in CsiBridge V15.1.0 S, except for shear ratio for Model A that was obtained from V15.1.0 Y.

Model A SUPERSEDED

CSiBridge Tabular Output SUPERSEDED

Strength Limit State

SUPERSEDED

	Strongth / Value 2 Flexure BOBJ1
Flexure	Flexure
BOBJ1	ROR I1
	DOD31
50	50
Before	After
s 0	6
Design was performed results are available, who or not the design passes	hether results are available, wheth
	Design was performed results are available, w

- This model had diapragms only at abatments and piens (it did not have any intermediate diaphragms).

The results on the Following 6 pages are for build V15.0.0-R

		- 1 - 1			
	Parameter	Unit	Value 1	Value 2	
	Request	Text	Flexure V	Flexure /	
	BridgeObj	Text	BOBJ1 √	BOBJ1	
		ft	50 V	50	
	Station	Text		/	
	Location		Before V	After √	
	Girder	Text	Interior Girder 1 V	Interior Girder 1	
	BeamProp	Text	I-Girder 0.625in T√	I-Girder 0.625in T√	
	LLDFactM	Unitless	0.696 ✓	0.696 √	
	LLDFactV	Unitless	0.935 ✓	0.935 ✓	
	ASlabTri	ft2	6.5	6.5 🗸	
	ThSlab	ft	0.66667 (€1) ✓	0.66667 √	
	WSlabEff	ft	(1/1711) 9.75	9.75 - say OK	(average
	fcConcSlab	Kip/ft2	576 (4ksi)	576	V
	ESlab	Kip/ft2	519119.5 (*604ksi)	519119.5 🗸	
	nLongTerm	Unitless	3 1	3 1	
	ARebSlabTop	ft2	0	0	
oαN	ARebSlabBot	ft2	0	0	
		ft	0	0	
-	YRebSlabTop YRebSlabRet	π ft			
eved	YRebSlabBot		0	0	
12	fysLRebar	Kip/ft2	8648 (GOKSI)	8640 ✓	
1A	ABeam	ft2	0.3835 (48in²) V	0.3335 ✓	
(0)	EBeam	Kip/ft2	4176000 (29,000 Ksi)	4176000 √	
6/	IxBeam	ft4	1.0668 (22121 in 4) V	1.0668 √	
	BeamRolled	Yes/No	No√	No√	
	ThFlgTop	ft	0.0521 (0.625") 🗸	0.0521 🗸	
	WdthFlgTop	ft	1.1667 (44") 🗸	1.1667 ✓	
	fyFlgTop	Kip/ft2	7200 (50 ksi)	7200 ✓	
	ThFlgBot	ft	0.0729 (0.875jn)V	0.0729	
	WdthFlgBot	ft	1.1667 (/\(\lambda\) \(\sigma\)	1.1667 ✓	
	fyFlgBot	Kip/ft2	7200 (50 Ksi) V	7200 ✓	
		Kip/ft2	5040 (\$5 Ksi)		, 6.6-2
	fyrFlgBot	Unitless		9) 4.0
	LamfBotFlg \(\lambda_\text{\psi}\)	/	8.002058 ✓	8.002058	I see ho
	LampfBotFlg > F	Unitless	9.151612 1	9.151612 🗸	1
	LamrfBotFlg), F	Unitless	16.119553 V (V5.16.966)	16.119553 🗸	7
	kcBotFlg k	Unitless	0.385054 \ hand)	0.385054 🗸	
	CmpctFlgBot	Yes/No	Yes √ (% 49.45)	Yes √	
	DepthWeb	ft	4.5 (541) √	4.5 🗸	
	ThickWeb	ft	0.0417 (0.51) V	0.0417 √	
	fyWeb	Kip/ft2	7200 (50 ksi) V	7200 ✓	
	DcpWebPos	ft	0 √	OV (checked a	<i>egainst</i> st
	DcWebNeg	ft	2.08172 \ 2511) \	2.08172 / 7 This	matches
- 2	DcpWebNeg	ft	1.95902 (23.5") 🗸		adsheet
	LamwWeb λ₩	Unitless	99.842831 √	99.842831 🗸	mo men
1	LampwDoWeb \(\lambda_\pi\w(\Da)		24.794714	24.794714	and who
	LampwDcpWeb \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Unitless	23.333292		
	1 AA/- b	Unitless	,	23.333292	
	LamrwWeb \(\lambda_{\psi\sqrt}\)		137.274178 ✓	137.274178 🗸	
	CmpctWebNeg	Yes/No	No J	No √	
	RpcWeb	Unitless	0	0	
	RptWeb	Unitless	0 "	0	(V5.3.5
1	/ rt	ft	0.29393 (3.527) V	0.29393 √	(N2. 2.

R	Pos	Unitless	1	1	
Rt	Neg	Unitless	1	1	
RI	Pos	Unitless	1	1	
Rh	Neg	Unitless	0.985987	0.985987	
Cmpc	tGrdPos	Yes/No	Yes	Yes	
Cmpc	tGrdNeg	Yes/No	Yes	Yes	
SxS	teelBot	ft3	0.495122 (4	55.5 in3) V 0.495122	
SxSt	eelTop	ft3	0.431837 (746.2iy=) V 0.431837	/ /
SxLTe	ermBPos	ft3	0.699063	$(207.9in^3)\sqrt{0.699063}$	/
SXLT	ermTPos	ft3		$3822 \cdot 310^3$ 2.21/966	
SxSTe	ermBPos	ft3		1316.6 in3) V 0.761928	(VS. 1316.
SXST	ermTPos	ft3	10.383153 (17942.1 in3) 10.383153	(VS. 19532
SxCor	mpBNeg	ft3	0.495122 (855in3) 0.495122	
SxCor	mpTNeg	ft3	0.315938 (545 in 3 0.315938	
M	Pos	Kip-ft	7506.8302 V		,
Mr.	Neg	Kip-ft	3892.4384 \		/ / / /
PNAI	DistPos	ft	0.503 (6		
PNAI	DistLmt = 0.420	= (0,42) ft	2.2225 (2		
> PNAI	DistNeg (60.3:	75)=25.36ft	3.49931(42		V5.36" 6
Mu	DNC	Kip-ft		(vs. /3/3 in spord.) 1297.0749) /
MuDO	CLTerm	Kip-ft	593.9712 √	(ys. 603 in sprd.) 593.9712	\checkmark
My	/Pos	Kip-ft	4735.7718 v	(V5.4724 in strd.) 4735.7718	3 1
⇒ MyN	legCtr	Kip-ft	1927.5769	(US. 3108 in spond.) 1927.5769	
MyN	legBot	Kip-ft	3566.3448	(vs. 3564 in 5 brd.) 3566.3448	√
> MyN	egTop	Kip-ft	1927.5769	1927.5769	
	Lp	ft	7.07873 (%)		(VS, 84.8
	Lr	ft	26.58006 (3		(US 318.
	Lb	ft	120 √~	120	(0 5/16.
Beam	PBklShr	Yes/No	No	No	

this allpeans to be taken from spacing of diapragus

Parameter	Unit	Value 1	Value 2	
raiametei	Offic	Value 1	Value 2	
Request	Text	Flexure √	Flexure	
BridgeObj	Text	BOBJ1 √	BOBJ∄√	
Station	ft	50 v	50 ✓	
Location	Text	Before √	After v	
Girder	Text	Interior Girder 1√	Interior Girder 1√	
Combo	Text	c Strength 1 √	g Strength 1√	
StepType	Text	Max √	Min ·	
Step	Text	0 ∨	0	
DSet	Text	Mu Combo √	Mu Combo √	
CodeEqtn	Text	6.10.7.1.1-1 Compact Section Positive Flexure	6/10.7.1.1-1 Compact Section Positive Flexure (), 6-1	(a)
MuPos	Kip-ft	5326.4245 V (NS 53/5	M ins knd.) 5326.4245	. /
fl	Kip/ft2	0	0	
MrPos	Kip-ft	6156.5033 🗸	6156.5033	(Vs. 6/42
Pu	Kip	0	0	
MuNonComp	Kip-ft	0	0	
MuLTerm	Kip-ft	0	0	
MuSTerm	Kip-ft	0	0	
fbuComp	Kip/ft2	0/	0	
fbuTens	Kip/ft2	A	0	
FrcPos	Kip/ft2	/0	0	
FrtPos	Kip/ft2	/ 0	0	
		0 0 0.86517√	0 0 0.86517√	

These values are reported as zero, because the section is compart and the resistance is composed directly to Mu Pos, therefore these values are not used.

Parameter	Unit	Value 1	Value 2
Request	Text	Flexure	Flexure
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	50	50
Location	Text	Before	After
Girder	Text	Interior Girder 1	Interior Girder 1
Combo	Text	c Strength 1	c Strength 1
StepType	Text	Max	Max
Step	Text	0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.8.2.3-3 Bottom Flange	6.10 8.2.3-3 Bottom Flar
MuNeg	Kip-ft	0	0
fl	Kip/ft2	0	0
MncFLB	Kip-ft	0	0
MncLTB	Kip-ft	0	0
MrcNeg	Kip-ft	0	0
MrtNeg	Kip-ft	0	0
Pu	Kip	-8.11E-08	-1.117E-07
MuNonComp	Kip-ft	1297.0749	1297.0749
MuLTerm	Kip-ft	593.9712	593.9712
MuSTerm	Kip-ft	3435.3783	-952.2962
fbuComp	Kip/ft2	9	0
fbuTens	Kip/ft2	0	0
FncFLB	Kip/ft2	7099.11	7099.11
FncLTB	Kip/ft2	247.27	247.27
FrcNeg	Kip/ft2	247.27	247.27
FrtNeg	Kip/ft2	7099.11	7099.11
DCRatio	Unitless	0	0

		OLRFD07 - SteellCompStrgth-S	
Parameter	Unit	Value 1 √	Value 2 √
Request	Text	Flexure √	Flexure ✓
BridgeObj	Text	BOBJ1 √	BOBJ1 /
Station	ft	50 ✓	50
Location	Text	Before √	After
Girder	Text	Interior Girder 1√	Interior Sirder 1
Combo	Text	c Strength 1 \vee	c Strength 1 ∨
StepType	Text	Max V	Min ∨
Step	Text	0 ✓	0 ~
DSet	Text	Mu Combo √	Mu Combo√
CodeEqtn	Text	6.10.9.2-1 🗸	6.10.9.2-1 v
PanelType	Text	Internal Unstiffened V	Internal Unstiffened
Vu	Kip	99.877 √ (Vs. 84.7	109.706 V
Vr	Kip	306.502 √	306.502 *
Vcr	Kip	306.502 √	306.502 √
Vp	Kip	783.949 🗸	783.949 V
С	Unitless	0.390971	0.390971 ✓
k	Unitless	5 √	5 🗸
d0	ft	0 🗸	0 ~
d0req	ft	0 4/	0 √
VrWithD0req	Kip	306.502 √	306.502 √
DCRatio	Unitless	0.325863	0.357929

same as for section at 0.417

Unit	Value 1	Value 2
	/	
esign 01 - Desig	gn Result Status ✓	hanged to strength 1
Unit	Value 1	Value 2
Text	Flexure	Flexure
Text	BOBJ1	BOB 1
ft	120	120
Text	Before	After
Unitless	0	0
Text	results are available, whether	r results are available, whether
	Unit Text Text ft Text Unitless	Unit Value 1 Text Flexure Text BOBJ1 ft 120 Text Before Unitless Text Design was performed and results are available, whether or not the design passed or

- This model had intermediate diapragms.

The results on the following 6 pages

The vesults on the following 6 pages

The vesults on the following 6 pages

			/	/ I
Parameter	Unit	Value 1	Value 2	
Request	Text	Flexure √	Flexure √	
BridgeObj	Text	BOBJ1 V	BOBJ1√	
Station	ft	120 🗸	120 √	
Location	Text	Before √	After	
Girder	Text	Interior Girder 2 √	Interior Girder 2 √	
BeamProp	Text	I-Girder 2.5in T	I-Girder 2.5in T	
LLDFactM	Unitless	0.696 🗸	0.696 √	
LLDFactV	Unitless	0.935 √	0.935 √	
ASlabTri	ft2	6.5 🗸	6.5 ✓	
ThSlab	ft	0.66667 (%1)	0.66667 ✓	
WSlabEff	ft	9.75 (1/121) ✓		1.1
fcConcSlab	Kip/ft2		9.75 √ ← 5AY	
ESlab	Kip/ft2	576 (4ksi) V	576 V	see calcs
	Unitless	519119.5 (3604 ksi)	519119.5 🗸	details)
nLongTerm	ft2	3 ✓	3 ✓	
ARebSlabTop		0	0	
ARebSlabBot	ft2	0	0	
YRebSlabTop	ft	0	0	
YRebSlabBot	ft	0	0	
fysLRebar	Kip/ft2	8640 (60ksi) √	8640 🗸	
ABeam	ft2	0.6987	0.6981	
EBeam	Kip/ft2	4176000 (29,000ksi) /	4176000 🗸	15/201
IxBeam	ft4	3.185525 (65432 in 4) V	3.155525 √	(vs. 65426 ins
BeamRolled	Yes/No	No √	No 🗸	
ThFlgTop	ft	0.2083 (2.51) √	0.2083	
WdthFlgTop	ft	1.1667 (14") 🗸	1.1667 🗸	
fyFlgTop	Kip/ft2	7200 (50ksi)√	7200 √	
ThFlgBot	ft	0.2292 (2.75") ✓	0.2292 🗸	
WdthFlgBot	ft	1.1667 (/ 4 ") v	1.1667	
fyFlgBot	Kip/ft2	7200 (50 Ksi) V	7200 √	
fyrFlgBot	Kip/ft2	5040 (35 ksi)V	5040	0.7 Fye, p. 6.
⇒ LamfBotFlg λ _F	Unitless	2.545157 √	2.545157 √	, , ,
LampfBotFlg $\lambda_{ upf}$	Unitless	9.151612 7	9.151612	same as for
LamrfBotFlg Art	Unitless	16.119553	16.119553	62 at 0.417L
kcBotFlg k	Unitless	0.385054	0.385054	
CmpctFlgBot	Yes/No	Yes (2.54 L 9.15) /	Yes √	
DepthWeb	ft	4.5 (541) V	4.5 ✓	
ThickWeb	ft	0.0417(0.5") ✓	0.0417 ✓	
fyWeb	Kip/ft2	7200 (50ksi) V	7200 ✓	
DcpWebPos /	ft	0 ✓	0 ✓	(us. 0 in spo
DcWebNeg	ft	2.16377 (25.9 711)	2.16377	(V5. 25.96 iu
DcpWebNeg	ft	1.95763 (23.501)	1.95763	(v5. 25.5" in s
LamwWeb	Unitless	103.777764	103.777764	(V5. 25.5 in s
LampwDcWeb \(\lambda_pw/\)(D		68.108233		
D 141	1.1-241	61.619599	68.108233	
Lamanul Mah	Unitless		61.619599	(US. 137.3 ha
CmpctWebNeg	Yes/No	137.274178 √	137.274178	(V5. 115715 NA
	Unitless	No ✓	No ✓	
RocWeb		0	0	
RptWeb	Unitless	0	0	1 - 02-1
/ rt J	ft ft4	0.32814 (3.937") sayok	0.32814 V	(vs 3.832" in

2/6 $N = \frac{29,000 \, \text{ksi}}{3,604 \, \text{ksi}} = 8.047$

Design Results Section at G2 1.000L

No Rebau Was considered

RbPos	Unitless	1	1
RbNeg	Unitless	1	1
RhPos	Unitless	1	1
RhNeg	Unitless	0.995361	0.995361
mpctGrdPos	Yes/No	Yes	Yes
mpctGrdNeg	Yes/No	Yes	Yes
SxSteelBot	ft3	1.318667 (2278,7in3)	√ 1.318667 √
SxSteelTop	ft3	1.240119 (2142.9 in3)	/
LTermBPos	ft3		5) say OK 1.513569 (2615.1
LTermTPos	ft3	2.661919 (4599 .8 in 3	2.881093 (4892.
STermBPos	ft3	1.573202 (2718.5 in	1,624842 (2807
STermTPos	ft3	5.897908 (10191.6 in	6.768451 \11695
CompBNeg	ft3	1.318667 (2278.71n3	1.31866/(22+8)
CompTNeg	ft3	0.957797 (1655.1 ins	0.957797 (4655.
MpPos	Kip-ft	14020.0069 🗸	14020.0069 🗸
MpNeg	Kip-ft	10170.3594 √	10170.3594 🗸
NADistPos	ft	0.85978 (10,3in) V	0.85978 ∨
NADistLmt 0.42Dt=	(0.42) ft	2.35375 (28.24in)	2.35375 ✓
NADistNeg 68.25)= 28.7" ft	3.50071(42")	3.50071
MuDNC	Kip-ft	-3584.7734 🗸	-3584.7734 V
uDCLTerm	Kip-ft	-1348.398 √	-1348.398 🗸
MyPos	Kip-ft	12109.4252	12635.1512
MyNegCtr	Kip-ft	7715.08	7715.08
MyNegBot	Kip-ft	9498.3148 √	9498.3148
MyNegTop	Kip-ft	7715/08	7715.08
Lp	ft	7.90269 (94.21)	7.90269√
Lr	ft	29.674 (356") √	29.674 /
Lb	ft	20 √	20 🗸
eamPBklShr	Yes/No	Yes	Yes

			FlexPos
Parameter	Unit	Value 1	Value 2
Request	Text	Flexure	Flexure
BridgeObj	Text	BOBJ1	BOBJ1
Station	ft	120	120
Location	Text	Before	After
Girder	Text	Interior Girder 2	Interior Girder 2
Combo	Text	c Strength 1	c Strength 1
StepType	Text	Max	Max
Step	Text	0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.7.1.1-1 Compact Section	6.107.1.1-1 Compact Section
MuPos	Kip-ft	0	0
fl	Kip/ft2	0	0
MrPos	Kip-ft	14020.0069	14020.0069
Pu	Kip	0	0
MuNonComp	Kip-ft	0	0
MuLTerm	Kip-ft	0	0
MuSTerm	Kip-ft	0	0
fbuComp	Kip/ft2	0	0
fbuTens	Kip/ft2	0	0
FrcPos	Kip/ft2	0/	0
FrtPos	Kip/ft2	Ø	0
DCRatio	Unitless	0	0

				1/
Parameter	Unit	Value 1 ⁷	Value 2 √	1
Request	Text	Flexure V	Flexure ✓	
BridgeObj	Text	BOBJ1 √	BOBJ1	1
Station	ft	120 √	120 🗸	
Location	Text	Before √	After √	
Girder	Text	Interior Girder 2 √	Interior Girder 2 V	
Combo	Text	c Strength 1 √	c Strength 1 √	
StepType	Text	Min ✓	Max ✓	
Step	Text	0 √	0 1	
DSet	Text	Mu Combo ∨	Mu Combo √	
CodeEqtn	Text	6.10.8.2.3-2 Bottom Flange	6.10.8/2.3-2 Bottom Flange	
-> MuNeg	Kip-ft	0	0	not su
fl	Kip/ft2	0	0	this
MncFLB	Kip-ft	0	0)
MncLTB	Kip-ft	0	0	> Not
MrcNeg	Kip-ft	0	0	wh
MrtNeg	Kip-ft	0	0) an
Pu	Kip	-3.679E-08	-9.252E-08	
MuNonComp	Kip-ft	-3584.7734 √	-3584.7734 🗸	(V5,-2
MuLTerm	Kip-ft	-1348.398	-1348.398 √	Cur
MuSTerm	S Kip-ft	/ -1179.39 8	-1179.398	(V5.
lange fbuComp*	Kip/ft2	-4633,51(-32.18ksi	-4633.51 E	(vs.
Flause fbuTens *	₹↑ Kip/ft2	5527.57(38 ksi)	5527.57	(Fro
FncFLB	Kip/ft2	7166.6 (49.8kbi)	7166.6	
FncLTB	Kip/ft2	1) 2800.49(19.4ksi)	2800.49	-(vs.
FrcNeg	€ Kip/ft2	2800.49 (19.4 kgi)	2800.49	(
FrtNeg	Kip/ft2	7166.6 (49.8 Kg)	7166.6	
DCRatio	Unitless	1.654531	1.654531	

* provide legend

Note that the program uses Cb =1

This was fixed for build

V15.0.0_1F. see build

For build V15.0.0_1F for

details.

BLE: Bridge Super [Design 32 - AASH1	OLRFD07 - SteellCompStrgth-S	hear
			,
Parameter	Unit	Value 1 V	Value 2 √
	T. /	Flexure V	ged to strength 1
Request	Text	Flexure	Flexure √
BridgeObj	Text	BOBJ1√	BOBJ1 √
Station	ft	120 ✓	120 🏏
Location	Text	Before √	After
Girder	Text	Interior Girder 2 √	Interior Girder 2 √
Combo	Text	c Strength 1 √	c Strength 1 ✓
StepType	Text	Max √	Max √
Step	Text	. 0	0
DSet	Text	Mu Combo	Mu Combo
CodeEqtn	Text	6.10.9.2-1	6.10.9.2-1
PanelType	Text	Internal Unstiffened	Internal Unstiffened
Vu		> 226.283 391.2/	226.284 391.
Vr		306.502	306.502
Vcr		7 22 2010 306.502	306.502 √
Vp	Kip	783.949 √	783.949 √
C	Unitless	0.390971 🗸	0.390971 🗸
k	Unitless	5 √	5 ✓
d0	ft	0 ✓	0 🗸
d0req	ft	0 /	0 ✓
VrWithD0req	Kip	306 502 /	306.502 (
DCRatio	Unitless	226,283 = 0.738276	0.738279 🗸

(V5. 394 in spo (V6. 306 in spo (V6. 783.914.6)

Model B SUPERSEDED

Model C SUPERSEDED