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1 Preliminaries

Equation of motion for a single degree of freedom can be written as

mü+ cu̇+ ku = −müg(t) (1)

where u is displacement relative to the ground [3], [4].
Eqn. (1) can be written as modal equation

ü+ 2ξωu̇+ ω2u = −üg(t) (2)

where

ω =

√
k

m
(3)

and

ξ =
c

2
√
km

< 1 (4)

Ground acceleration üg is assumed to be linear over a time step i:

üg(t) = üg(ti−1) +
üg(ti)− üg(ti−1)

ti − ti−1
(t− ti−1) (5)

Let’s define slope, s, of the acceleration within a time step as

s =
üg(ti)− üg(ti−1)

ti − ti−1
(6)

and time step independent time variable, t, as

t = t− ti−1 (7)

For each time step, Equations (2), (5), (6) and (7) can be combined into
the following differential equation for u(t)

1



Response Spectrum Generation Computers & Structures, Inc.

ü(t) + 2ξωu̇(t) + ω2u(t) = −üg(ti−1)− st (8)

with initial conditions

u(t)t=0 = u(ti−1) (9)
u̇(t)t=0 = u̇(ti−1) (10)

The solution of Equation (8) with initial conditions (9) and (10) will be
obtained as a sum of homogeneous and particular solution

u = uh + up (11)

2 Homogeneous Solution

2.1 General Solution

The solution of homogeneous second-order linear ordinary differential equa-
tion with constant coefficients

y′′ + ay′ + by = 0 (12)

where a, b are real constants is readily available in the literature [1].
Let λ1and λ2 be the roots of the characteristic equation

f(λ) = λ2 + aλ+ b = 0 (13)

1. If λ1 6= λ2 real, then

y = C1e
λ1x + C2e

λ1x (14)

2. If λ = λ1 = λ2, then

y = (C1x+ C2)eλx (15)

3. If λ1 = α+ iβ, λ2 = α− iβ (β 6= 0), then

y = eαx(C1 cos(βx) + C2 sin(βx)) = eαxC cos(βx+ θ) (16)
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2.2 Problem Specific Solution

By comparison of Eqns. (1) and (12), the generic a, b coefficients in Eqn. (12)
can we written in the problem specific variables ξ and ω as

a = 2ξω (17)
b = ω2 (18)

Then

a2 − 4b = (2ξω)2 − 4ω2 = 4ω2(ξ2 − 1) = −4ω2(1− ξ2) = −4ωd2 < 0 (19)

where

ωd = ω
√

1− ξ2 (20)

The solution of characteristic equation (13) has complex roots

λ1 =
−2ξω + 2iω

√
1− ξ2

2
= −ξω + iωd (21)

λ2 = −ξω − iωd (22)

α and β from the general solution can be rewritten using the problem
specific variables as

α = −ξω (23)
β = ωd (24)

Substituting Eqns. (23) and (24) into Eqn. (16) yields

uh(t) = e−ξωt (C1 cos(ωdt) + C2 sin(ωdt)) (25)

The constants C1 and C2 will be determined from the initial conditions.

3 Particular Solution

3.1 General Solution

Particular solution, yp, of differential equation

y′′ + ay′ + by = R(x) (26)

where a, b are real constants is also readily available in the literature [1].
For the special case of R(x) = P (x) = Ax2 +Bx+ C and b 6= 0
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yp =
1
b

(
P (x)− a

b
P ′(x) +

a2 − b
b2

P ′′(x)

)
(27)

For our case, A = 0, therefore

P (x) = Bx+ C (28)
P ′(x) = B (29)
P ′′(x) = 0 (30)

and Eqn. (27) reduces to

yp =
1
b

(
Bx+ C − a

b
B

)
(31)

3.2 Problem Specific Solution

The a, b, B, and C constants can be written using problem specific notation
(see Eqns. (8), (17) and (18)) as

a = 2ξω (32)
b = ω2 (33)
B = −s (34)
C = −üg(ti−1) (35)

Then the general particular solution described by Eqn. (27) becomes

up(t) =
1
ω2

(
−st+ (−ü(ti−1))− 2ξω

ω2
(−s)

)
= − s

ω2
t+

1
ω2

(
2ξ
ω
s− üg(ti−1)

)
= Et+ F (36)

where

E = − s

ω2
(37)

F =
1
ω2

(
2ξ
ω
s− üg(ti−1)

)
(38)
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4 Complete Solution

Eqns. (25) and (36) can be added to obtain complete solution as

u(t) = uh(t) + up(t)

= e−ξωt (C1 cos(ωdt) + C2 sin(ωdt)) + Et+ F (39)

The unknown coefficients C1 and C2 will be determined from initial
conditions.

Derivative of Eqn. (39) is

u̇(t) = −ξωe−ξωt (C1 cos(ωdt) + C2 sin(ωdt)) +

e−ξωt (C1ωd(− sin(ωdt)) + C2ωd cos(ωdt)) + E (40)

Evaluating Eqn. (39) and (40) for initial conditions (9) and (10) yields

u(ti−1) = e0(C1 cos 0 + C2 sin 0) + F (41)
u̇(ti−1) = −ξωe0(C1 cos 0 + C2 sin 0) +

e0(C1ωd(− sin 0) + C2ωd cos 0) + E (42)

Simplify the above as

u(ti−1) = C1 + F (43)
u̇(ti−1) = −ξωC1 + C2ωd + E (44)

Finally, express C1 and C2

C1 = u(ti−1)− F (45)

C2 =
u̇(ti−1) + ξωC1 − E

ωd
(46)

4.1 Summary

The final solution is

u(t) = e−ξωt (C1 cos(ωdt) + C2 sin(ωdt)) + Et+ F (47)

where
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C1 = u(ti−1)− F (48)

C2 =
u̇(ti−1) + ξωC1 − E

ωd
(49)

E = − s

ω2
(50)

F =
1
ω2

(
2ξ
ω
s− üg(ti−1)

)
(51)

s =
üg(ti)− üg(ti−1)

ti − ti−1
(52)

ωd = ω
√

1− ξ2 (53)

t = t− ti−1 (54)

5 Computer Algorithm

The formulation described by Eqn. (39) is applied recursively for each step,
i = 1 to n. In order to apply the algorithm and to obtain acceleration
response spectrum, we will also need to calculate velocity and acceleration
by obtaining first and second derivatives of Eqn. (39).

5.1 Velocity

u̇(t) = −ξωe−ξωt (C1 cos(ωdt) + C2 sin(ωdt)) +

e−ξωt (C1ωd(− sin(ωdt)) + C2ωd cos(ωdt)) + E (55)

5.2 Acceleration

ü(t) = ξ2ω2e−ξωt (C1 cos(ωdt) + C2 sin(ωdt))−
ξωe−ξωt (C1ωd(− sin(ωdt)) + C2ωd cos(ωdt))−
ξωe−ξωt (C1ωd(− sin(ωdt)) + C2ωd cos(ωdt)) +

e−ξωt
(
C1ωd

2(− cos(ωdt)) + C2ωd
2(− sin(ωdt))

)
= ξ2ω2e−ξωt (C1 cos(ωdt) + C2 sin(ωdt))−

2ξωe−ξωt (C1ωd(− sin(ωdt)) + C2ωd cos(ωdt)) +

e−ξωt
(
C1ωd

2(− cos(ωdt)) + C2ωd
2(− sin(ωdt))

)
(56)

5.3 Algorithm

The ground acceleration time history is given as a vector of acceleration
values that are uniformly spaced in time as shown in Fig. 1.
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i =

t = t t t t
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ug

t

Figure 1: Measured ground acceleration discretized by linear segments

In the first solution step, the initial displacement and velocity at time
t1 = 0 are taken to be zero. Eqns. (47), (55) and (56) are applied to obtain
displacement, velocity, and acceleration the time t2.

In the subsequent steps, the displacement and velocity calculated for
the previous step are applied as initial conditions for the current step and
displacement, velocity, and acceleration at the end of the step are calculated.

After repeating the above procedure for all n steps, time histories of
displacements, velocities and accelerations are obtained. Spectral values are
determined as follows [2]:

Spectral displacement, Sd Maximum absolute displacement obtained from
the time history.

Spectral velocity, Sv Maximum absolute velocity obtained from the time
history.

Spectral acceleration, Sa Maximum absolute acceleration obtained from
the time history.

Spectral pseudo-velocity, Spv Calculated from spectral displacement as
Spv = ωSd

Spectral pseudo-acceleration, Spa Calculated from spectral displacement
as Spa = ω2Sd
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