Detailed derivation of selected link relationships and equations from CSI Analysis Reference Manual (Draft)

Computers \& Structures, Inc.
August 26, 2009

1 Detailed derivation of relationship between joint displacements and link internal forces

This article contains a detailed derivation of some link equations presented in CSI Analysis Reference Manual, chapter "The Link/Support ElementBasic". Uncoupled linear force-deformation relationship can be written using the following matrix equations (see Manual section Link/Support Properties, Uncoupled Linear Force-Deformation Relationships):

$$
\left\{\begin{array}{c}
f_{u 1} \tag{1}\\
f_{u 2} \\
f_{u 3} \\
f_{r 1} \\
f_{r 2} \\
f_{r 3}
\end{array}\right\}=\left[\begin{array}{cccccc}
k_{u 1} & 0 & 0 & 0 & 0 & 0 \\
& k_{u 2} & 0 & 0 & 0 & 0 \\
& & k_{u 3} & 0 & 0 & 0 \\
& & & k_{r 1} & 0 & 0 \\
& \text { sym. } & & & k_{r 2} & 0 \\
& & & & & k_{r 3}
\end{array}\right]\left\{\begin{array}{l}
d_{u 1} \\
d_{u 2} \\
d_{u 3} \\
d_{r 1} \\
d_{r 2} \\
d_{r 3}
\end{array}\right\}
$$

The above equation can be concisely written as:

$$
\begin{equation*}
\left\{f_{u}\right\}=[K]\left\{d_{u}\right\} \tag{2}
\end{equation*}
$$

Link element forces can be written in the terms of link internal forces as follows (see Manual section Link/Support Properties, Element Internal Forces):

$$
\left\{\begin{array}{c}
P \tag{3}\\
V 2 \\
V 3 \\
T \\
M 2 \\
M 3
\end{array}\right\}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & d-\mathbf{d j} 3 & 0 & 1 & 0 \\
0 & d-\mathbf{d j} 2 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
f_{u 1} \\
f_{u 2} \\
f_{u 3} \\
f_{r 1} \\
f_{r 2} \\
f_{r 3}
\end{array}\right\}
$$

Concisely:

$$
\begin{equation*}
\{F\}=\left[M_{1}\right]\left\{f_{u}\right\} \tag{4}
\end{equation*}
$$

For one-joint link, link deformations can be written in the terms of joint displacements as follows (note that $\mathrm{d}=0$ at J end of the link; see Manual section Internal Deformations):

$$
\left\{\begin{array}{c}
d_{u 1} \tag{5}\\
d_{u 2} \\
d_{u 3} \\
d_{r 1} \\
d_{r 2} \\
d_{r 3}
\end{array}\right\}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -\mathbf{d j} 2 \\
0 & 0 & 1 & 0 & \mathbf{d j 3} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right\}_{j}
$$

Concisely:

$$
\begin{equation*}
\left\{d_{u}\right\}=\left[M_{2}\right]\{u\} \tag{6}
\end{equation*}
$$

Equations (4) and (6) can be substituted into equation (2) to yield:

$$
\begin{gather*}
{\left[M_{1}\right]^{-1}\{F\}=[K]\left[M_{2}\right]\{u\}} \tag{7}\\
\{F\}=\left[M_{1}\right][K]\left[M_{2}\right]\{u\} \tag{8}
\end{gather*}
$$

Upon substitution:

$$
\begin{gather*}
{\left[M_{1}\right][K]=\left[\begin{array}{cccccc}
k_{u 1} & 0 & 0 & 0 & 0 & 0 \\
0 & k_{u 2} & 0 & 0 & 0 & 0 \\
0 & 0 & k_{u 3} & 0 & 0 & 0 \\
0 & 0 & 0 & k_{r 1} & 0 & 0 \\
0 & 0 & -\mathbf{d j} \mathbf{3} k_{u 3} & 0 & k_{r 2} & 0 \\
0 & -\mathbf{d j} \mathbf{2} k_{u 2} & 0 & 0 & 0 & k_{r 3}
\end{array}\right]} \tag{9}\\
{\left[M_{1}\right][K]\left[M_{2}\right]=\left[\begin{array}{cccccc}
k_{u 1} & 0 & 0 & 0 & 0 & (9) \\
0 & k_{u 2} & 0 & 0 & 0 & 0 \\
0 & 0 & k_{u 3} & 0 & \mathbf{d j} \mathbf{3} k_{u 3} & -\mathbf{d j 2} k_{u 2} \\
0 & 0 & 0 & k_{r 1} & 0 & 0 \\
0 & 0 & -\mathbf{d j} \mathbf{3} k_{u 3} & 0 & -k_{r 2}-\mathbf{d j} \mathbf{3}^{2} k_{u 3} & 0 \\
0 & -\mathbf{d j} \mathbf{2} k_{u 2} & 0 & 0 & 0 & k_{r 3}+\mathbf{d j} \mathbf{2}^{2} k_{u 2}
\end{array}\right]}
\end{gather*}
$$

Or:

$$
\left\{\begin{array}{c}
P \\
V 2 \\
V 3 \\
T \\
M 2 \\
M 3
\end{array}\right\}_{j}=\left[\begin{array}{cccccc}
k_{u 1} & 0 & 0 & 0 & 0 & 0 \\
0 & k_{u 2} & 0 & 0 & 0 & -\mathbf{d j} 2 k_{u 2} \\
0 & 0 & k_{u 3} & 0 & \mathbf{d j} 3 k_{u 3} & 0 \\
0 & 0 & 0 & k_{r 1} & 0 & 0 \\
0 & 0 & -\mathbf{d j} \mathbf{3} k_{u 3} & 0 & -k_{r 2}-\mathbf{d j} \mathbf{3}^{2} k_{u 3} & 0 \\
0 & -\mathbf{d j} \mathbf{2} k_{u 2} & 0 & 0 & 0 & k_{r 3}+\mathbf{d j} \mathbf{2}^{2} k_{u 2}
\end{array}\right]\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right\}_{j}
$$

(11)

2 Equivalent Shear and Bending Springs for Prismatic Beam

The Manual gives an example of equivalent shear and bending springs computed for prismatic beam with a section bending stiffness of EI in the 1-2 plane. The beam element stiffness matrix at joint \mathbf{j} for the 1-2 bending plane is:

$$
\left\{\begin{array}{c}
V 2 \tag{12}\\
M 3
\end{array}\right\}_{j}=\frac{E I}{L^{3}}\left[\begin{array}{cc}
12 & -6 L \\
-6 L & 4 L^{2}
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
r_{3}
\end{array}\right\}_{j}
$$

From Equation (11), the following two equations can be extracted:

$$
\left\{\begin{array}{c}
V 2 \tag{13}\\
M 3
\end{array}\right\}_{j}=\left[\begin{array}{cc}
k_{u 2} & -\mathbf{d j} 2 k_{u 2} \\
-\mathbf{d j} 2 k_{u 2} & k_{r 3}+\mathbf{d j} 2^{2} k_{u 2}
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
r_{3}
\end{array}\right\}_{j}
$$

Equating the matrix coefficients in Equations (12) and (13) yields the following set of three equations for three unknowns $k_{u 2}, k_{r 3}$ and $\mathbf{d j} 2$:

$$
\begin{gather*}
k_{u 2}=\frac{12 E I}{L^{3}} \tag{14}\\
-\mathbf{d j} 2 k_{u 2}=\frac{-6 E I}{L^{2}} \tag{15}\\
k_{r 3}+\mathbf{d j} 2^{2} k_{u 2}=\frac{4 E I}{L} \tag{16}
\end{gather*}
$$

From Equation (15):

$$
\begin{equation*}
\mathbf{d j} \mathbf{2}=\frac{-6 E I}{L^{2}} \frac{1}{-k_{u 2}}=\frac{-6 E I}{L^{2}} \frac{-12 E I}{L^{3}}=\frac{L}{2} \tag{17}
\end{equation*}
$$

From Equation (16):

$$
\begin{equation*}
k_{r 3}=\frac{4 E I}{L}-\mathbf{d j} 2^{2} k_{u 2}=\frac{4 E I}{L}-\left(\frac{L}{2}\right)^{2} \frac{12 E I}{L^{3}}=\frac{E I}{L} \tag{18}
\end{equation*}
$$

