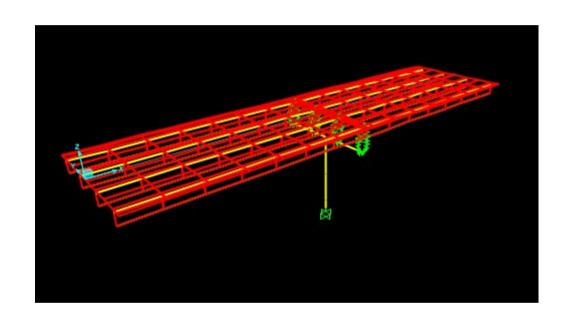
Verification of Horizontal Moving Loads

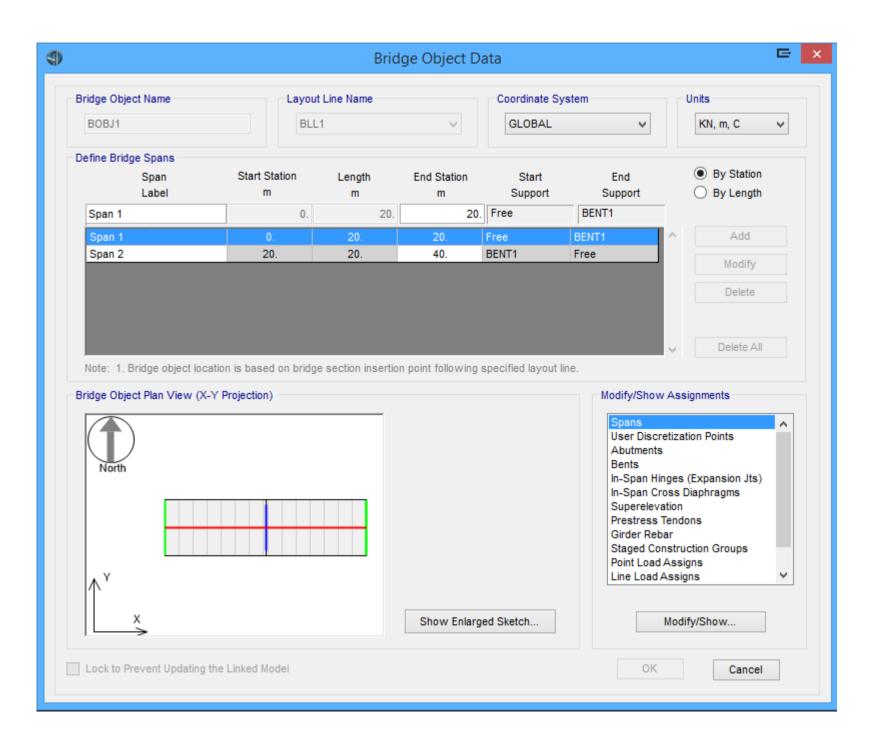
Program: CSiBridge

Version: 17.2.0 Build 1133

Date: 5/7/2015

Author: ok


Model version: run1


Purpose

 Verify horizontal moving loads newly implemented for CSiBridge V17.2.0.

Model Description

- The model is a fictitious bridge structure with two 20m long spans and one 3m wide lane centered on the bridge.
- Bridge bridge has no supports at the abutments and cantilevers from the middle bent, supported by a single column (this setup was used to easily check the reactions).
- The top of deck is at elevation Z=0m and the base of the column is at elevation Z=-10m.

Discussion of Results

CSiBridge 2015 - model 3 V17.2.0

Joint Reactions

□ □ ×

File View Format-Filter-Sort Select Options

Units: As Noted

Joint Reactions

Filter:

	Joint Text	OutputCase Text	CaseType Text	StepType Text	F1 KN	F2 KN	F3 KN	M1 KN-m	M2 KN-m	M3 KN-m
>	21	a. ALL	LinMoving	Max	0.25	4.158E-09	1	4.5177	22.4625	8.2827
	21	a. ALL	LinMoving	Min	-0.25	-0.408	0	-0.75	-22.4625	-8.2827
	21	a. VERT	LinMoving	Max	1.508E-07	4.061E-09	1	0.75	20	8.035E-08
	21	a. VERT	LinMoving	Min	-1.509E-07	-4.085E-09	0	-0.75	-20	-8.149E-08
	21	a. CENTRIFUGAL	LinMoving	Max	1.321E-08	0	0	4.0177	9.64E-08	8.1577
	21	a. CENTRIFUGAL	LinMoving	Min	-1.347E-08	-0.408	-2.873E-09	0	-1.003E-07	-8.1577
	21	a. BRAKING	LinMoving	Max	0.25	0	1.061E-10	1.448E-09	2.4625	0.1875
	21	a. BRAKING	LinMoving	Min	-0.25	0	-1.061E-10	-1.448E-09	-2.4625	-0.1875
	21	b. ALL	LinMoving	Max	0.25	5.544E-09	1	5.0177	21.9625	8.2038
	21	b. ALL	LinMoving	Min	-0.25	-0.408	0	-1	-21.9625	-8.2038
	21	b. VERT	LinMoving	Max	1.471E-07	5.415E-09	1	1	19.5	7.839E-08
	21	b. VERT	LinMoving	Min	-1.471E-07	-5.445E-09	0	-1	-19.5	-8.054E-08
	21	b. CENTRIFUGAL	LinMoving	Max	1.288E-08	0	0	4.0177	9.394E-08	7.9538
	21	b. CENTRIFUGAL	LinMoving	Min	-1.314E-08	-0.408	-2.856E-09	0	-9.789E-08	-7.9538
	21	b. BRAKING	LinMoving	Max	0.25	1.312E-10	1.327E-10	1.879E-09	2.4625	0.25
	21	b. BRAKING	LinMoving	Min	-0.25	-1.312E-10	-1.327E-10	-1.879E-09	-2.4625	-0.25
	21	c. ALL	LinMoving	Max	0.75	1.386E-08	3	15.9346	65.8875	24.8317
	21	c. ALL	LinMoving	Min	-0.75	-1.224	0	-2.5	-65.8875	-24.8317
	21	c. VERT	LinMoving	Max	4.412E-07	1.354E-08	3	2.5	58.5	2.351E-07
	21	c. VERT	LinMoving	Min	-4.414E-07	-1.361E-08	0	-2.5	-58.5	-2.395E-07
	21	c. BRAKING	LinMoving	Max	0.75	1.312E-10	3.45E-10	4.775E-09	7.3875	0.625
	21	c. BRAKING	LinMoving	Min	-0.75	-1.312E-10	-3.45E-10	-4.775E-09	-7.3875	-0.625
	21	c. CENTRIFUGAL	LinMoving	Max	3.864E-08	0	0	12.053	2.818E-07	23.8614
	21	c. CENTRIFUGAL	LinMoving	Min	-3.942E-08	-1.224	-8.568E-09	0	-2.937E-07	-23.8614
	21	d. CENTRIFUGAL	LinMoving	Max	1.894E-08	0	0	5.91	1.382E-07	11.7
	21	d. CENTRIFUGAL	LinMoving	Min	-1.932E-08	-0.6	-4.201E-09	0	-1.44E-07	-11.7
	21	c. VERT+CENTR	LinMoving	Max	4.414E-07	4.878E-08	3	23.5004	58.5	23.8614
	21	c. VERT+CENTR	LinMoving	Min	-4.415E-07	-1.224	0	-9	-58.5	-23.8614

Record: << < 1 > >> of 28

Add Tables...

Done

The features described below were tested on model 3. (Program output is for Build 1133a)

T	ID	Case (Load	Feature Tested		L	Reactions at Joint 21			
П		Case Prefix)		Direction	Axle or	Vehicle CG	Other	Expected	Program
L					Uniform			Results	Output
	1.1	a	Numerically verify vertical,	all	axle	at deck			
Т	1.2		longitudinal and transverse moving	vert	axle	at deck		F1 = F2 = 0	F1 = F2 = 0
- 1			loads for axle loads. Check					F3 = 1	F3 = 1
- 1			independent directions overall					M1 = 0.75	M1 = 0.75
\perp			response.					M2 = 20	M2 = 20
- 1	1.3			centrifugal	axle	at deck		F2 = 0.4079	F2 = 0.408
4								M1 = 4.0178	M1 = 4.0177
- 1	1.4			braking	axle	at deck		F1 = 0.25	F1 = 0.25
\perp								M2 = 2.4625	M2 = 2.4625
\perp	2.1	b	Numerically verify centrifugral and	all	unif	at deck			
	2.2		braking loads for uniform loads	vert	unif	at deck		F1 = F2 = 0	F1 = F2 = 0
- 1								F3 = 1	F3 = 1
- 1								M1 = 1	M1 = 1
+	0.0				:£	-t -ll-		M2 = 19.5	M2 = 19.5
- 1	2.3			centrifugal	unif	at deck		F2 = 0.4079	F2 = 0.408
+	2.4			bealing	unif	at deck		M1 = 4.0178 F1 = 0.25	M1 = 4.0177 F1 = 0.25
- 1	2.4			braking	unii	at deck		M2 = 2.4625	M2 = 2.4625
+	3.1	С	Numerically verify centrifugal and	all	unif+axle	2m above deck		IVIZ - 2.40Z3	IVIZ - 2.4023
+	3.1	C	braking loads for combined axle	vert	unif+axle unif+axle	2m above deck		F1 = F2 = 0	F1 = F2 = 0
- 1	3.2		and uniform loads with vehicle cg	vert	unintaxie	ZIII above deck		F3 = 3	F3 = 3
- 1			2m above lane.					M1 = 2.5	M1 = 2.5
- 1			Ziii above laile.					M2 = 58.5	M2 = 58.5
\pm	3.3			centrifugal	unif+axle	2m above deck	Overturning not	F2 = 1.2237	F2 = 1.224
- 1	0.0			Continugui	arm area	Ziii abovo acon	considered due to	M1 = 12.053	M1 = 12.053
- 1							insufficient vertical		
- 1							load.		
\top	3.4			braking	unif+axle	2m above deck	cg above deck not	F1 = 1.5	F1 = 0.75
							considered	M2 = 14.775	M2 = 7.3875
\top	3.5			vert + cent	unif+axle	2m above deck	10m wide lane	F1 = 0	F1 = 0
- [F2 = 1.2237	F2 = 1.224
								F3 = 3	F3 = 3
								M1 = 23.5008	M1 = 23.5004
	4.1	d	Numerically verify centrifugal loads	centrifugral	unif+axle	2m above deck		F2 = 0.6	F2 = 0.6
			defined using distance					M1 = 5.91	M1 = 5.91
						<u> </u>			